无机材料学报 ›› 2017, Vol. 32 ›› Issue (11): 1121-1127.DOI: 10.15541/jim20170011 CSTR: 32189.14.10.15541/jim20170011
• 综述 • 下一篇
传秀云
收稿日期:
2017-01-05
修回日期:
2017-03-30
出版日期:
2017-11-20
网络出版日期:
2017-10-20
作者简介:
传秀云(1965-), 女, 教授. E-mail: xychuan@pku.edu.cn
基金资助:
CHUAN Xiu-Yun
Received:
2017-01-05
Revised:
2017-03-30
Published:
2017-11-20
Online:
2017-10-20
Supported by:
摘要:
本文在分析石墨微观结构和性能基础上, 综合分析了石墨加工改性方法, 提出了石墨纳米结构组装的概念, 介绍了几种石墨纳米结构组装的方法。通过结构组装, 引入纳米功能粒子, 制造活性功能空间, 合成新型石墨功能材料; 通过制备石墨层间化合物、碳石墨合金等方法引入纳米功能粒子组装碳石墨材料; 通过打开石墨层片, 制备二维层状材料制备纳米石墨烯片, 可以采用氧化活化等制造孔隙结构增加活性空间; 通过调节石墨晶体排布方向减少石墨材料的性能异向性, 提高性能均匀性; 通过石墨结构纳米组装设计, 设计新型石墨功能材料。纳米尺度的石墨加工和改性有可能推动石墨矿物资源的有效利用, 开发新型石墨储能材料和石墨烯片材料。
中图分类号:
传秀云. 石墨的纳米结构组装[J]. 无机材料学报, 2017, 32(11): 1121-1127.
CHUAN Xiu-Yun. Microstructure Design of Graphite in Nanoscale[J]. Journal of Inorganic Materials, 2017, 32(11): 1121-1127.
图1 石墨层间化合物(GICs)的结构示意图[15,20]
Fig. 1 Sketch of structure and graphite intercalation compound[15,20](a) Stage structure, ─ graphite layer; ** intercalate; (b) Layered structure
图5 石墨层间被打开后形成的膨胀石墨的孔隙结构的SEM照片[11,29]
Fig. 5 SEM images of pore structure of expanded graphite by exfoliation[11,29](a) Expanded graphite by heat treatment; (b) Expanded graphite by microwaved treatment
图6 不同制备方法获得的石墨制品中的石墨的晶体排布特征
Fig. 6 Sketch of graphite crystalline arrangement in graphitic materials by different preparation (a) Aanisotropic polycrystalline graphite; (b) Isotropic and tubostratic stacking polycrystalline graphite
[1] | CHUNG D D L. Graphite.Journal of Materials Science, 2002, 37(8): 1475-1489. |
[2] | YI LI-WEN.Graphite resources and developments in the world.Land and Resources Information, 2011, 6: 29-32, 23. |
[3] | YI LI-WEN.Graphite, Land and Resources Information Center, Annual Review of World Mineral Resources. Beijing: Geological Publishing House, 2013: 286-292. |
[4] | CHUAN XIU-YUN.Graphite resources and its industries development analysis.High technology and Industry, 2014, 213: 50-55. |
[5] | CHUAN XIU-YUN, LU XIAN-CHU, GONG PING.Installing engineering in micro-struture and photocatalytic properties of porous mineral.Earth Science Frontiers, 2005, 12(1): 188-195. |
[6] | CHUAN XIU-YUN. Nanostructured engineering of mineral materials. Earth Science Frontiers#/magtechI#, 2000, 7(Suppl):58, 86. |
[7] | CHUAN XIU-YUN.Natural graphite mineral and energy storage materials.China Non-metallic Mining Industry Herald, 2013, 103(3): 1-3. |
[8] | DRESSELHAUS M S, DRESSLHAUS G.Intercalation compounds of graphite.Advances in physics, 1981, 30(2): 139-142. |
[9] | FLANDROIS S, MASSON J M, ROUILLON J C,et al. Intercalation compounds of graphite with nickle chloride. Synthetic Metals, 1981, 3: 1-13. |
[10] | KANG FEI-YU.Research and application of graphite intercalation compounds.New Carbon Materials, 1998, 13(3): 65-66. |
[11] | CHUAN XIU-YUN, CHEN DAI-ZHAN, ZHOU XUN-RUO.Intercalation of CuCl2 into expanded graphite.Carbon, 1997, 353(2): 311-313. |
[12] | CHUAN XIU-YUN.The electrical properties of expanded graphite intercalation compounds.Journal of Materials Scicence & Technology, 2001, 17(3): 371-375. |
[13] | CHUAN XIU-YUN.Structure, properties and application analysis of graphite intercalation compounds.New carbon materials, 1996, 11(2): 36-42. |
[14] | CHUAN XIU-YUN.Synthesis techniques and applications of graphite intercalation compounds.Nonmetallic Mines, 1997, 4: 18-25. |
[15] | CHUAN XIU-YUN.Formation mechanism of graphite intercalation compounds.New Carbon Materials, 2000, 15(1): 50-56. |
[16] | CHUAN XIU-YUN.Micro-structures of the CuCl2-GICs on TEM.Journal of Inorganic Materials, 2000, 15(1): 79-87. |
[17] | CHUAN XIU-YUN.Magnetic properties of expanded graphite intercalation compound of CuCl2-NiCl2.Journal of Inorganic Materials, 2000, 15(6): 1077-1082. |
[18] | CHUAN XIU-YUN, CHEN DAI-ZHAN, ZHOU XUN-RUO.The electrical property and its mechanism of intercalation compounds of CuCl2.Acta Physica Sinica, 1999, 48(6): 1132-1136. |
[19] | CHUNG D D L. Exfoliation of graphite.Journal of Materials Science, 1987, 22(12): 4190-4198. |
[20] | YANG LI, LIU HONG-BO, LI FU-JIN,et al. Characterization and microwave absorption properties of ternary FeCl3-NiCl2-GICs. New Carbon Materials, 2008, 23(4): 367-373. |
[21] | ZHOU MING-SHAN, LI CHENG-JUN, XU MING,et al. Properties and preparation of graphite intercalation compound of FeCl3-CrO3-GIC. Chinese Journal of Inorganic Chemistry, 2006, 22(11): 2049-2054. |
[22] | LIU HONG-BO, XIAO GU-YU, SU YU-CHANG,et al. Study on structural stability and thermostability of FeCl3-GIC. New Carbon Materials, 2000, 15(1): 18-22. |
[23] | REN HUI, JIAO QINGJIE, QIAO XIAOJING,et al. Synthesis and characterization of the ternary graphite intercalation compounds. Journal of Beijing Institute of Technology, 2003, 23(2): 248-251. |
[24] | MICHIO INAGAKI, KANG FEI-YU.Carbon Materials Science and Engineering from Fundamental to Application. Beijing: Tsinghua University Press, 2006: 29-31. |
[25] | LI SONG, ZHENG LIU, ARAVA LEELA MOHANA REDDY,et al. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Advanced Materials, 2012, 24: 4878-4895. |
[26] | HAN PENG-YI.Microscopic fluctuations of graphene crystals.Physics, 2009, 38(6): 386. |
[27] | PARTOENS B, PETERS F M.From graphene to graphite: electronic structure around the K point.Phys. Rew. B, 2006, 74(7): 075404. |
[28] | GEIM A K, NOVOSELOV K S.The rise of graphene.Nature, 2007, 6: 183-191. |
[29] | CHUAN XIU-YUN.Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China.International Nano Letters, 2013, 3: 6-11. |
[30] | CHUAN XIU-YUN. Graphene like flakes by natural graphite flake in Shandong with microwave method.Acta Mineralogica Sinica#/magtechI#, 2012, Sl: 87-88. |
[31] | ZHANG Q, ZHANG L, LI J H.Application of graphene gased nanomaterials in enzymatic electrochemical biosensor.Chinese Journal of Analytical Chemistry, 2013, 41(5): 641-649. |
[32] | SUN XIAO-DAN, LIU ZHONG-QUN, YAN HAO.Preparation and biological application of graphene quantum dots.Journal of Inorganic Materials, 2016, 31(4): 337-344. |
[33] | SUN GUILEI, YAN HONGHAO, LI XIAOJIE.Preparation of grapheme by detonation using liquid explosive.Explosion and Shock Waves, 2016, 36(5): 715-720. |
[34] | MALACHI NOKED, ABRAHAM SOFFER, DORON AURBACH.The electrochemistry of activated carbonaceous materials: past, present, and future.J. Solid State Electrochem., 2011, 15: 1563-1578. |
[35] | CHUAN XIU-YUN.Carbon materials applied in environmental engineering.Acta Petrologica et Mineralogica, 2001, 20(4): 507-510. |
[36] | KANG FEI-YU.Graphite intercalation compound and exfoliated graphite.New Carbon Materials, 2000, 15(4): 80. |
[37] | KANG FEI-YU, ZHENG YONG-PING, ZHAO HENG,et al. Sorption of heavy oil and biomedical liquids into exfoliated graphite-research in China. New Carbon Materials, 2003, 18(3): 161-173. |
[38] | CHUNG D D L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing.Carbon, 2012, 50: 3342-3353. |
[39] | LIU HENG, SUN MINGQING, LI JUN,et al. Piezoresistive effects of cement-based composites containing graphene nanoplatelets. Journal of Functional Materials, 2015, 16: 16064-16068. |
[40] | YANG YU-FEN, CHEN XIANG-BIAO, GAI GUO-SHENG,et al. Preparation of spherical graphite. Journal of Process Engineering, 2004, 4(z1): 309-313. |
[41] | HAO XIANG-YANG, GAI GUO-SHENG, YANG YU-FEN,et al. Shape modification of natural graphite powders used in lithium ion batteries. Rare Metal Material and Engineering, 2005, 34(z1): 167-169. |
[42] | CHUAN XIU-YUN, WANG TONG-KUAN, JEAN-BAPTISTE DONNET.Stability and existence of carbyne with carbon chains.New Carbon Materials, 2005, 20(1): 83-92. |
[43] | CHUAN XIU-YUN, NOZOMI MORIHARA, BAO YING,et al. Orbicular graphite in Oshirabetsu, Hokkaido, Japan. Acta Geologica Sinica, 2012, 86(2): 241-246. |
[44] | CHUNG D D L. Self-Monitoring structural materials.Mater. Sci. Eng. Rev., 1998, R22(2): 57-78. |
[45] | XU LI, SHENG PENG, CHEN XIN,et al. Preparation and application of three-dimensional graphene nanospheres in lithium ion battery. Journal of Inorganic Materials, 2016, 31(9): 976-980. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 杨茗凯, 黄泽皑, 周芸霄, 刘彤, 张魁魁, 谭浩, 刘梦颖, 詹俊杰, 陈国星, 周莹. 基于Cu与金属氧化物-KCl熔融介质的甲烷热解制备少层石墨烯与氢气联产研究[J]. 无机材料学报, 2025, 40(5): 473-480. |
[8] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[11] | 高晨光, 孙晓亮, 陈君, 李达鑫, 陈庆庆, 贾德昌, 周玉. 基于湿法纺丝技术的SiBCN-rGO陶瓷纤维的组织结构、力学和吸波性能[J]. 无机材料学报, 2025, 40(3): 290-296. |
[12] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[13] | 王悦, 王欣, 于显利. 室温铁磁性还原氧化石墨烯基全碳膜[J]. 无机材料学报, 2025, 40(3): 305-313. |
[14] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[15] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||