无机材料学报 ›› 2016, Vol. 31 ›› Issue (11): 1157-1165.DOI: 10.15541/jim20160119 CSTR: 32189.14.10.15541/jim20160119
• • 下一篇
袁 钦, 宋永才
收稿日期:
2016-03-03
修回日期:
2016-05-04
出版日期:
2016-11-10
网络出版日期:
2016-10-25
作者简介:
袁 钦(1983–), 男, 博士研究生. E-mail: yinzi863@163.com
基金资助:
YUAN Qin, SONG Yong-Cai
Received:
2016-03-03
Revised:
2016-05-04
Published:
2016-11-10
Online:
2016-10-25
About author:
YUAN Qin. E-mail: yinzi863@163.com
摘要:
连续SiC纤维最主要的制备方法是先驱体转化法, 目前已发展到第三代, 它主要作为SiC基复合材料(SiCf/SiC)的增强体。SiCf/SiC具有优异的耐高温、抗氧化和高温抗蠕变性, 及其在中子辐照条件下的低放射性, 成为高温、辐射等苛刻条件下结构部件的优先候选材料。本文首先对国内外SiC纤维的发展, 尤其是对第三代SiC纤维的不同制备思路和特征进行了介绍。然后, 对SiCf/SiC制备工艺和性能的进展进行了综述, 突出了制备工艺创新与SiC纤维发展的关系。最后, 对近几年SiCf/SiC在高性能航空发动机、聚变反应堆领域的应用进展进行了总结, 并对国内连续SiC纤维和SiCf/SiC复合材料的发展进行了展望。
中图分类号:
袁 钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016, 31(11): 1157-1165.
YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities[J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165.
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
表1 三代SiC纤维的组成、结构、性能和价格[7-13]
Table 1 Details of composition, structure, properties, and cost of three generations SiC based fibers[7-13]
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
图1 热处理后纤维拉伸强度与结晶尺寸的关系(Ar, 1 h)[33]
Fig. 1 Relationship between tensile strength and the crystallite size for fibers annealed at elevated temperatures in Ar for 1 h[33]
[1] | MADAR R.Silicon carbide in contention.Nature, 2004, 430(7003): 974-975. |
[2] | EVANS A G.Prospective on the development of high toughness ceramics.J. Am. Ceram. Soc., 1990, 73(2): 187-206. |
[3] | MA QING-SONG, LIU HAI-TAO, PAN YU, et al.Research progress on the application of C/SiC composites in scramjet.Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[4] | YAJIMA S, HAYASHI J, OMORI M, et al.Development of a SiC fiber with high tensile strength.Nature, 1976, 261(5562): 683-685. |
[5] | YAJIMA S, HASEGAWA Y, HAYASHI J, et al.Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus. I. Synthesis of polycarbosilane as precursor.J. Mater. Sci., 1978, 13(12): 2569-2576. |
[6] | HASEGAWA Y, IIMURA M, YAJIMA S.Synthesis of continuous silicon carbide fibre. II Conversion of polycarbosilane fibre into silicon carbide fibres.J. Mater. Sci., 1980, 15(3): 720-728. |
[7] | BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres.J. Mater. Sci., 2006, 41(3): 823-839. |
[8] | NASLAIN R.Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[9] | ZHAO DA-FANG, WANG HAI-ZHE, LI XIAO-DONG.Development of polymer-derived SiC fiber.Journal of Inorganic Materials, 2009, 24(6): 1097-1104. |
[10] | ISHIKAWA T.Advances in inorganic fibers.Adv. Polym. Sci., 2005, 178: 109-144. |
[11] | SACKS M D.Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers. J. Eur. Ceram. Soc., 1999, 19(13/14): 2305-2315. |
[12] | SACKS M, SCHEIFFELE G, ZHANG L, et al.Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance. Ceram. Eng. Sci. Proc., 1988, 19(3): 73-86. |
[13] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al.High-strength alkali-resistant sintered SiC fiber stable to 2200℃.Nature, 1998, 391(6669): 773-775. |
[14] | WANG DE-YIN, MAO XIAN-HE, SONG YONG-CAI, et al.Preparation and properties of SiC fiber with a stable excess carbon layer on the surface.Journal of Inorganic Materials, 2009, 24(6): 1209-1213. |
[15] | COUSTUMER P L, MONTHIOUX M, OBERLIN A.Understanding Nicalon fibre.J. Eur. Ceram. Soc., 1993, 11(2): 95-103. |
[16] | WANG DE-YIN, SONG YONG-CAI, JIAN KE.Effect of composition and structure on the specific resistivity of continuous silicon carbide fibers.Journal of Inorganic Materials, 2012, 27(2): 162-168. |
[17] | SHIMOO T, CHEN H, OKAMURA K.High-temperature stability of Nicalon under Ar or O2 atmosphere.J. Mater. Sci., 1994, 29(2): 456-463. |
[18] | JOHNSON S M, BRITTAIN R D, LAMOREAUX R H, et al.Degradation mechanisms of silicon carbide fibers.J. Am. Ceram. Soc., 1988, 71(3): 132-135. |
[19] | SUGIMOTO M, SHIMOO T, OKAMURA K, et al.Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis. J. Am. Ceram. Soc., 1995, 78(8): 1013-1017. |
[20] | TAKI T, OKAMURA K, SATO M, et al.A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy.J. Mater. Sci. Lett., 1988, 7(3): 209-211. |
[21] | HASEGAWA Y.Si-C fiber prepared from polycarbosilane cured without oxygen.J. Inorg. Organomet. P., 1992, 2(1): 161-169. |
[22] | MAO X H, SONG Y C, LI W, et al.Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor.J. Appl. Polym. Sci., 2007, 105(3): 1651-1657. |
[23] | TOREKI W, BATICH C D, SACKS M D, et al.Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability.Compos. Sci. Technol., 1994, 51(2): 145-159. |
[24] | XUE JIN-GEN, WANG YING-DE, SONG YONG-CAI.Preparation of low oxygen SiC fiber by dry spinning.Journal of Inorganic Materials, 2007, 22(4): 681-684. |
[25] | TAKEDA M, IMAI YOSHIKAZU, ICHIKAWA HIROSHI, et al.Thermal stability of SiC fiber prepared by an irradiation-curing process.Compos. Sci. Technol., 1999, 59(6): 793-799. |
[26] | CHOLLON G, PAILLER R, NASLAIN R, et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi- Nicalon).J. Mater. Sci., 1997, 32(2): 327-347. |
[27] | SHIMOO T, OKAMURA K, MUTOH W.Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly(carbosilane) precursor.J. Mater. Sci., 2003, 38(8): 1653-1660. |
[28] | BODET R, BOURRAT X, LAMON J, et al.Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content.J. Mater. Sci., 1995, 30(3): 661-677. |
[29] | TAKEDA M, SAKAMOTO J, IMAI Y, et al.Properties of stoichiometric silicon carbide fiber derived from polycarbosilane.Ceram. Eng. Sci. Proc., 1994, 15(4): 133-141. |
[30] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers.J. Am. Ceram. Soc., 2000, 83(5): 1063-1069. |
[31] | LIPOWITZ J, RABE J A, ZANGVIL A, et al.Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition.Ceram. Eng. Sci. Proc., 1997, 18(3): 147-157. |
[32] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Properties of polycarbosilane-derived silicon carbide fibers with various C/Si compositions.Compos. Sci. Technol., 1999, 59(6): 787-792. |
[33] | SHA J J, HINOKI T, KOHYAMA A.Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures. J. Mater. Sci., 2007, 42(13): 5046-5056. |
[34] | IVEKOVIC A, NOVAK S, DRAZIC G, et al.Current status and prospects of SiCf/SiC for fusion structural applications.J. Eur. Ceram. Soc., 2013, 33(10): 1577-1589. |
[35] | DICARLO J A.Creep limitations of current polycrystalline ceramic fibers.Compos. Sci. Technol., 1994, 51(2): 213-217. |
[36] | LI YONG-QIANG, SONG YONG-CAI.Synthesis and spinnability of the high softening-point polycarbosilane.Chem. J. Chinese Universities, 2014, 35(10): 2272-2280. |
[37] | LI YONG-QIANG, SONG YONG-CAI, YUAN QIN.Synthesis and spinnability of the high softening-point polycarbosilane via bridge method.Acta Polymerica Sinica, 2015(2): 186-196. |
[38] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Adjusting the oxygen content of the cured polyaluminocarbosilane fibers.Chem. J. Chinese Universities, 2015, 36(6): 1213-1220. |
[39] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Studies on the air curing and oxygen control of polyaluminocarbosilane fibers with different Al contents.Acta Polymerica Sinica, 2016(2): 155-163. |
[40] | YUAN QIN, SONG YONG-CAI.Effects of Al and O content on the transformation from SiAlCO to Si(Al)C fibers after high temperature treatment.Journal of Inorganic Materials, 2016, 31(4): 393-400. |
[41] | SU Z, ZHANG L, LI Y, et al.Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere.J. Am. Ceram. Soc., 2015, 98(7): 2014-2017. |
[42] | TANG X, ZHANG L, TU H, et al.Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers.J. Mater. Sci., 2010, 45(21): 5749-5755. |
[43] | ZHAO S, ZHOU X, YU J.Effect of heat treatment on the mechanical properties of PIP-SiC/SiC composites fabricated with a consolidation process.Ceram. Int., 2014, 40(3): 3879-3885. |
[44] | HE XIN-BO, QU XUAN-HUI, YE BIN.Preparation and mechanical properties of SiCf/SiC composites.Journal of Inorganic Materials, 2005, 20(3): 677-684. |
[45] | ZHAO SHUANG, YANG ZI-CHUN, ZHOU XIN-GUI.Fracture behavior of SiC/SiC composites with different interfaces.Journal of Inorganic Materials, 2016, 31(1): 58-62. |
[46] | KOTANI M, INOUE T, KOHYAMA A, et al.Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite.Mater. Sci. Eng. A, 2003, 357(1/2): 376-385. |
[47] | KOTANI M, INOUE T, KOHYAMA A, et al.Consolidation of polymer-derived SiC matrix composites: processing and microstructure. Compos. Sci. Technol., 2002, 62(16): 2179-2188. |
[48] | INTERRANTE L V, WHITMARSH C W, SHERWOOD W, et al.High yield polycarbosilane precursors to stoichiometric SiC synthesis, pyrolysis and application.Pro. Mater. Res. Soc., 1994, 346: 593-603. |
[49] | RUSHKIN I L, SHEN Q, LEHMAN S E, et al.Modification of a hyperbranched hydridopolycarbosilane as a route to new polycarbosilanes.Macromolecules, 1997, 30(11): 3141-3146. |
[50] | ZHAO S, YANG Z, ZHOU X.Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor.J. Am. Ceram. Soc., 2015, 98(4): 1332-1337. |
[51] | ZHAO S, ZHOU X, YU J, et al.SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS.Fusion Eng. Des., 2014, 89(2): 131-136. |
[52] | KOTANI M, KATOH Y, KOHYAMA A, et al.Fabrication and oxidation resistance property of allylhydridopolycarbosilane derived SiC/SiC composites.J. Ceram. Soc. Jpn., 2003, 111: 300-307. |
[53] | INTERRANTE L V, JACOBS J M, SHERWOOD W, et al. Fabrication and properties of fiber- and particulate-reinforced SiC matrix composites obtained with (A)HPCS as the matrix source. Key Eng Mater, 1996, 127-131: 271-278. |
[54] | NANNETTI C A, ORTONA A, PINTO D A, et al.Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis.J. Am. Ceram. Soc., 2004, 87(7): 1205-1209. |
[55] | XU YONG-DONG, CHENG LAI-FEI, ZHANG LI-TONG.Three dimensional textile SiC/SiC composites by chemical vapor infiltration.Journal of Inorganic Materials, 2001, 12(2): 344-348. |
[56] | KATOH Y, SNEAD L L, HENAGER C H, et al.Current status and recent research achievements in SiC/SiC composites.J. Nucl. Mater., 2014, 455(1/2/3): 387-397. |
[57] | BERTRAND S, LAVAUD J F, HADI R E, et al.The thermal gradient-pulse flow CVI process: a new chemical vapor infiltration technique for the densification of fibre preforms. J. Eur. Ceram. Soc., 1998, 18(7): 857-870. |
[58] | IGAWA N, TAGUCHI T, SNEAD L L, et al. Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system. J Nucl. Mater., 2002, 307-311(Part 2): 1205-1209. |
[59] | NASLAIN R R, PAILLER R, BOURRAT X, et al. Processing of Ceramic Matrix Composites by Pulsed-CVI and Related Techniques. Key Eng. Mater., 1999, 159-160: 359-366. |
[60] | ZHOU QING, DONG SHAO-MING, ZHANG XIANG-YU, et al.Carbon fiber surfae coating by forced pressure-pulsed CVI.Journal of Inorganic Materials, 2006, 21(6): 58-62. |
[61] | SAYANO A, SUTOH C, SUYAMA S, et al. Development of a reaction-sintered silicon carbide matrix composite. J. Nucl. Mater., 1999, 271-272: 467-471. |
[62] | WANG H, ZHOU X, YU J, et al.Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration.Mater. Lett., 2010, 64(15): 1691-1693. |
[63] | EINSET E O.Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites.Chem. Eng. Sci., 1998, 53(5): 1027-1039. |
[64] | KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater., 2007, 367-370(Part A): 659-671. |
[65] | KOHYAMA A, PARK J S, JUNG H C.Advanced SiC fibers and SiC/SiC composites toward industrialization.J. Nucl. Mater., 2011, 417(1/2/3): 340-343. |
[66] | SHIMODA K, PARK J S, HINOKI T, et al. Microstructural optimization of high-temperature SiC/SiC composites by NITE process. J. Nucl. Mater., 2009, 386-388: 634-638. |
[67] | KOYANAGI T, KONDO S, HINOKI T.The influence of sintering additives on the irradiation resistance of NITE SiC.J. Nucl. Mater., 2011, 417(1/2/3): 435-439. |
[68] | KOHYAMA A, KATOH Y.Overview of CREST-ACE program for SiC/SiC ceramic composites and their energy system applications.Ceram. Trans., 2002, 144: 3-18. |
[69] | IEST Co Ltd. |
[70] | NOVAK S, RADE K, KONIG K, et al.Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications.J. Eur. Ceram. Soc., 2008, 28(14): 2801-2807. |
[71] | NOVAK S, DRAZIC G, KONIG K, et al.Preparation of SiCf/SiC composites by the slip infiltration and transient eutectoid (SITE) process.J. Nucl. Mater., 2010, 399(2/3): 167-174. |
[72] | NOVAK S, IVEKOVIC A.Fabrication of SiCf/SiC composites by SITE-P process.J. Nucl. Mater., 2012, 427(1/2/3): 110-115. |
[73] | NASLAIN R.DESIGN. Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[74] | CHEN S, HU H, ZHANG Y, et al.Rapid densification of C/SiC composites by joint processes of CLVD and PIP.Mater. Lett., 2011, 65(19/20): 3137-3139. |
[75] | YAN LIAN-SHENG, LI HE-JUN, CUI HONG, et al.Low-cost C/SiC composites prepared by CVI+pressure-PIP hybrid process.Journal of Inorganic Materials, 2006, 21(3): 664-670. |
[76] | WEN SHENG-QIONG, HE AI-JIE.Application of CMC on thermal parts of aeroengine.Aeronautical Manufacturing Technology, 2009(S1): 4-7. |
[77] | GAO TIE, HONG ZHI-LIANG, YANG JUAN.Application and prospect of ceramic matrix composite components for commercial aircraft engine.Aeronautical Manufacturing Technology, 2014(6): 14-21. |
[78] | MURTHY P, NEMETH N, BREWER D S, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.Compos. Part B-Eng., 2008(39): 694-703. |
[79] | VERRILLI M J, MARTIN L C, BREWER D N.RQL Sector Rig Testing of SiC/SiC Combustor Liners. NASA/TM-2002-211509, 2002. |
[80] | ELAM S, EFFMGER M, HOLMES R, et al.Lightweight Chambers for Thrust Cell Applications. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, 2000: 1-10. |
[81] | OGASAWARA T.Recent research activities regarding SiC-based ceramic composites for aerospace applications.J. Plasma Fusion Res., 2004, 80(1): 36-41. |
[82] | |
[83] | GE |
[84] | SMITH C L.The need for fusion.Fusion Eng. Des., 2005, 74(1-4): 3-8. |
[85] | ZHAO S, ZHOU X, YU J, et al.Compatibility of PIP SiCf/SiC with LiPb at 700℃.Fusion Eng. Des., 2010, 85(7/8/9): 1624-1626. |
[86] | SNEAD L L, JONES R H, KOHYAMA A, et al. Status of silicon carbide for fusion. J. Nucl. Mater., 1996, 233-237(Part 1): 26-36. |
[87] | NOZAWA T, HINOKI T, HASEGAWA A, et al. Recent advances and issues in development of silicon carbide composites for fusion applications. J. Nucl. Mater., 2009, 386-388: 622-627. |
[88] | SNEAD L L, NOZAWA T, FERRARIS M, et al.Silicon carbide composites as fusion power reactor structural materials.J. Nucl. Mater., 2011, 417(1/2/3): 330-339. |
[89] | HENAGER C H, KURTZ R J. Compatibility of interfaces and fibers for SiC-composites in fusion environments. J. Nucl. Mater., 2009, 386-388: 670-674. |
[90] | IHLI T, BASU T K, GIANCARLI L M, et al.Review of blanket designs for advanced fusion reactors.Fusion Eng. Des., 2008, 83(7/8/9): 912-919. |
[91] | NORAJITRA P, BUHLER L, FISCHER U, et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators. Fusion Eng. Des., 2001, 58-59: 629-634. |
[92] | RAFFRAY A R, EL-GUEBALY L, GORDEEV S, et al. High performance blanket for ARIES-AT power plant. Fusion Eng. Des., 2001, 58-59: 549-553. |
[93] | NORAJITRAA P, ABDEL-KHALIK S I, GIANCARLI L M, et al. Divertor conceptual designs for a fusion power plant.Fusion Eng. Des., 2008, 83(7/8/9): 893-902. |
[94] | GOLFIER H, AIELLO G, FUTTERER A M, et al. Performance of the TAURO blanket system associated with a liquid-metal cooled divertor. Fusion Eng. Des., 2000, 49-50: 559-565. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[8] | 苟燕子, 康伟峰, 王堋人. 烧结条件对制备高结晶近化学计量比SiC纤维的影响[J]. 无机材料学报, 2025, 40(4): 405-414. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[11] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[12] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[13] | 李伟, 许志明, 苟燕子, 尹森虎, 余艺平, 王松. SiC纤维烧结陶瓷的制备及其性能研究[J]. 无机材料学报, 2025, 40(2): 177-183. |
[14] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[15] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||