无机材料学报 ›› 2015, Vol. 30 ›› Issue (8): 867-871.DOI: 10.15541/jim20150015 CSTR: 32189.14.10.15541/jim20150015
郭 静, 靳 俊, 温兆银, 刘 宇
收稿日期:
2015-01-09
修回日期:
2015-04-04
出版日期:
2015-08-20
网络出版日期:
2015-07-21
作者简介:
郭 静(1989–), 女, 博士研究生. E-mail: gjsmile@student.mail.sic.ac.cn
基金资助:
GUO Jing, JIN Jun, WEN Zhao-Yin, LIU Yu
Received:
2015-01-09
Revised:
2015-04-04
Published:
2015-08-20
Online:
2015-07-21
About author:
GUO Jing. E-mail: gjsmile@student.mail.sic.ac.cn
摘要:
采用简单的反向溶剂法制备出了直径为100 nm左右的高纯、高结晶度的纳米纤维状硒, 采用X射线粉末衍射仪、扫描电子显微镜对纤维硒进行结构和形貌的表征。硒纤维电极由于减小了单质硒的尺寸, 因而减缓不导电放电产物Li2Se在活性物质Se表面附着所引起的“钝化”作用, 从而大大提高了活性物质利用率, 减缓了普通硒电极的容量衰减。与普通硒正极相比, 硒纤维正极具有更高的比容量和循环稳定性, 0.1C(1C=675 mAh/g)倍率下首周放电比容量达到465 mAh/g, 40周后容量保持在213 mAh/g。同时由于缩短了锂离子的扩散路径, 硒纤维电极比普通硒电极具有更高的电化学活性, 其倍率性能得到了大幅提高。
中图分类号:
郭 静, 靳 俊, 温兆银, 刘 宇. 反向溶液法制备硒纳米纤维正极的电化学性能研究[J]. 无机材料学报, 2015, 30(8): 867-871.
GUO Jing, JIN Jun, WEN Zhao-Yin, LIU Yu. Electrochemical Performance of Nano-fibrous Selenium Cathode Synthesized by Reverse Solvent Method for Rechargeable Li-batteries[J]. Journal of Inorganic Materials, 2015, 30(8): 867-871.
图4 普通硒和纤维硒电极的前两周充放电曲线(a) (b), 循环寿命曲线(c)和倍率性能(d)
Fig. 4 Galvanostatic charge/discharge curves (a, b), cycling performance (c) and rate capability (d) of pristine Se and Se fiber The symbol “◆”denotes the value of specific capacity of Se fiber from literature [14]
[1] | WAKIHARA M.Recent developments in lithium ion batteries.Materials Science & Engineering R-Reports, 2001, 33(4): 109-134. |
[2] | RITCHIE A, HOWARD W.Recent developments and likely advances in lithium-ion batteries.Journal of Power Sources, 2006, 162(2): 809-812. |
[3] | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al.Li-O-2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(1): 19-29. |
[4] | Padbury R, Zhang X W.Lithium-oxygen batteries-limiting factors that affect performance.Journal of Power Sources, 2011, 196(10): 4436-4444. |
[5] | ZHENG G Y, YANG Y, CHA J J, et al.Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.Nano Letters, 2011, 11(10): 4462-4467. |
[6] | FERGUS J W.Recent developments in cathode materials for lithium ion batteries.Journal of Power Sources, 2010, 195(4): 939-954. |
[7] | LI C, ZHANG H P, FU L J, et al.Cathode materials modified by surface coating for lithium ion batteries.Electrochimica Acta, 2006, 51(19): 3872-3883. |
[8] | ELLIS BRIAN L, LEE KYU TAE, NAZAR LINDA F.Positive electrode materials for Li-ion and Li-batteries.Chemistry of Materials, 2010, 22(3): 691-714. |
[9] | LUO C, XU Y H, ZHU Y J, et al.Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.Acs Nano, 2013, 7(9): 8003-8010. |
[10] | CUI Y, ABOUIMRANE A, LU J, et al.(De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem.Soc., 2013, 135(21): 8047-8056. |
[11] | ABOUIMRANE A, DAMBOURNET D, CHAPMAN K W, et al.A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.J. Am. Chem. Soc., 2012, 134(10): 4505-4508. |
[12] | LIU L L, HOU Y Y, WU X W, et al.Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries.Chemical Communications, 2013, 49(98): 11515-11517. |
[13] | YANG C P, XIN S, YIN Y X, et al.An advanced selenium- carbon cathode for rechargeable lithium-selenium batteries.Angewandte Chemie, 2013, 52(32): 8363-8367. |
[14] | KUNDU DIPAN, KRUMEICH FRANK, NESPER REINHARD.Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries.Journal of Power Sources, 2013, 236: 112-117. |
[15] | ZHANG ZHIAN, YANG XING, WANG XIWEN, et al.TiO2-Se composites as cathode material for rechargeable lithium-selenium batteries.Solid State Ionics. 2014, 260: 101-106. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||