无机材料学报 ›› 2015, Vol. 30 ›› Issue (8): 785-792.DOI: 10.15541/jim20140664 CSTR: 32189.14.10.15541/jim20140664
• • 下一篇
谭 毅1, 2, 石 爽1, 2, 姜大川1, 2
收稿日期:
2014-12-22
修回日期:
2015-02-09
出版日期:
2015-08-20
网络出版日期:
2015-07-21
基金资助:
TAN Yi1, 2, SHI Shuang1, 2, JIANG Da-Chuan1, 2
Received:
2014-12-22
Revised:
2015-02-09
Published:
2015-08-20
Online:
2015-07-21
摘要:
电子束熔炼具有高能量密度、高真空度等优点, 能够有效地去除硅中的挥发性杂质, 使其在制备太阳能级多晶硅材料方面具有巨大的优势和广阔的应用前景, 目前已经实现了产业化应用, 成为冶金法制备太阳能级硅材料的关键环节之一。本文在阐述挥发性杂质去除的热力学原理的基础上, 对其去除效果和去除机制进行了总结。同时, 针对电子束熔炼技术目前存在的问题, 结合作者在这些方面的探索, 从数值模拟、节能型熔炼方式以及与定向凝固技术的耦合等角度对现阶段的研究重点进行了综述, 并对其未来的发展趋势进行了展望。
中图分类号:
谭 毅, 石 爽, 姜大川. 电子束熔炼制备太阳能级多晶硅的研究现状与发展趋势[J]. 无机材料学报, 2015, 30(8): 785-792.
TAN Yi, SHI Shuang, JIANG Da-Chuan. Progress in Research and Development of Solar-grade Silicon Preparation by Electron Beam Melting[J]. Journal of Inorganic Materials, 2015, 30(8): 785-792.
[1] | SWANSON R M.Photovoltaics power up.Science, 2009, 324(5929): 891-892. |
[2] | POWELL D M, WINKLER M T, CHOI H J, et al.Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs.Energy Environ. Sci., 2012, 5(3): 5874-5883. |
[3] | COLETTI G.Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities.Prog. Photovoltaics, 2013, 21(5): 1163-1170. |
[4] | TYAGI V V, RAHIM N A A, RAHIM N A, et al. Progress in solar PV technology: research and achievement.Renew. Sust. Energ. Rev., 2013, 20: 443-461. |
[5] | BUONASSISI T, ISTRATOV A A, MARCUS M A, et al.Engineering metal-impurity nanodefects for low-cost solar cells.Nat. Mater., 2005, 4(9): 676-679. |
[6] | HUDELSON S, NEWMAN B K, BERNARDIS S, et al.Retrograde melting and internal liquid gettering in silicon.Adv. Mater., 2010, 22(35): 3948-3953. |
[7] | PIZZINI S.Towards solar grade silicon: challenges and benefits for low cost photovoltaics.Sol. Energy Mater. Sol. Cells, 2010, 94(9): 1528-1533. |
[8] | CIFTJA A.Rrefining of solar cell silicon through metallurgical routes.JOM, 2012, 64(8): 933-934. |
[9] | CORTES A D S, SILVA D S, VIANA G A, et al. Solar cells from upgraded metallurgical-grade silicon purified by metallurgical routes.J. Renew. Sustain. Energy, 2013, 5(2): 123-129. |
[10] | YU W Z, MA W H, LV G Q, et al.Low-cost process for silicon purification with bubble adsorption in Al-Si melt.Metall. Mater. Trans. B, 2014, 45(4): 1573-1578. |
[11] | FANG M, LU C H, HUANG L Q, et al.Multiple slag operation on boron removal from metallurgical-grade silicon using Na2O-SiO2 slags.Ind. Eng. Chem. Res., 2014, 53(30): 12054-12062. |
[12] | CHOUDHURY A, HENGSBERGER E.Electron beam melting and refining of metals and alloys.ISIJ Int., 1992, 32(5): 673-681. |
[13] | BAKISH R.The substance of a technology: Electron-beam melting and refining.JOM, 1998, 50(11): 28-30. |
[14] | CASENAVE D, GAUTHIER R, PINARD P.A study of the purification process during the elaboration by electron bombardment of polysilicon ribbons designed for photovoltaic conversion.Sol. Energy Mater., 1981, 5(4): 417-423. |
[15] | IKEDA T, MAEDA M.Purification of metallurgical silicon for solar-grade silicon by electron beam button melting.ISIJ Int., 1992, 32(5): 635-642. |
[16] | KATO Y, HANAZAWA K, BABA H, et al.Purification of metallurgical grade silicon to solar grade for use in solar cell wafers.Tetsu To Hagane-J. Iron Steel Inst. Jpn., 2000, 86(11): 9-16. |
[17] | YUGE N, ABE M, HANAZAWA K, et al.Purification of metallurgical-grade silicon up to solar grade. Prog. Photovoltaics, 2001, 9(3): 203-209. |
[18] | MITRASINOVIC A M, D'SOUZA R, UTIGARD T A. Impurity removal and overall rate constant during low pressure treatment of liquid silicon.J. Mater. Process. Technol., 2012, 212(1): 78-82. |
[19] | SAFARIAN J, TANGSTAD M.Vacuum refining of molten silicon.Metall. Mater. Trans. B, 2012, 43(6): 1427-1445. |
[20] | 王强. 电子束熔炼提纯冶金级硅工艺研究. 大连: 大连理工大学硕士学位论文, 2010. |
[21] | WANG Q, DONG W, TAN Y, et al.Impurities evaporation from metallurgical-grade silicon in electron beam melting process.Rare Metals, 2011, 30(3): 274-277. |
[22] | SUN J L, ZHANG J, WANG H W, et al.Purification of metallurgical grade silicon in an electron beam melting furnace.Surf. Coat. Technol., 2013, 228: S67-S71. |
[23] | LIU T, DONG Z Y, ZHAO Y W, et al.Large scale purification of metallurgical silicon for solar cell by using electron beam melting.J. Cryst. Growth, 2012, 351(1): 19-22. |
[24] | MIYAKE M, HIRAMATSU T, MAEDA M.Removal of phosphorus and antimony in silicon by electron beam melting at low vacuum.J. Jpn. Inst. Met., 2006, 70(1): 43-46. |
[25] | OSOKIN V A, SHPAK P A, ISHCHENKO V V, et al.Electron- beam technology for refining polycrystalline silicon to be used in solar power applications.Metallurgist, 2008, 52(1/2): 121-127. |
[26] | PIRES J C S, BRAGA A F B, MEI P R. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace.Sol. Energy Mater. Sol. Cells, 2003, 79(3): 347-355. |
[27] | PIRES J C S, OTUBO J, BRAGA A F B, et al. The purification of metallurgical grade silicon by electron beam melting.J. Mater. Process. Technol., 2005, 169(1): 16-20. |
[28] | PENG X, DONG W, TAN Y, et al.Removal of aluminum from metallurgical grade silicon using electron beam melting.Vacuum, 2011, 86(4): 471-475. |
[29] | SHI S, DONG W, PENG X, et al.Evaporation and removal mechanism of phosphorus from the surface of silicon melt during electron beam melting.Appl. Surf. Sci., 2013, 266: 344-349. |
[30] | TAN Y, GUO X L, SHI S, et al.Study on the removal process of phosphorus from silicon by electron beam melting.Vacuum, 2013, 93: 65-70. |
[31] | 彭旭. 电子束熔炼冶金硅中杂质蒸发行为研究. 大连: 大连理工大学硕士学位论文, 2011. |
[32] | 姜大川. 电子束熔炼提纯多晶硅的研究. 大连: 大连理工大学博士学位论文, 2012. |
[33] | ASGHAR H M N U K, TAN Y, SHI S, et al. Removal of oxygen from silicon by electron beam melting.Appl. Phys. A, 2014, 115(3): 753-757. |
[34] | SASAKI H, KOBASHI Y, NAGAI T, et al. Application of electron beam melting to the removal of phosphorus from silicon: toward production of solar-grade silicon by metallurgical processes. Adv. Mater. Sci. Eng., 2013, 2013: 857196-1-8. |
[35] | SAFARIAN J, TANGSTAD M.Kinetics and mechanism of phosphorus removal from silicon in vacuum induction refining.High Temp. Mater. Process., 2012, 31(1): 73-81. |
[36] | HANAZAWA K, YUGE N, KATO Y.Evaporation of phosphorus in molten silicon by an electron beam irradiation method.Mater. Trans., 2004, 45(3): 844-849. |
[37] | KEMMOTSU T, NAGAI T, MAEDA M.Removal rate of phosphorus from molten silicon.High Temp. Mater. Process., 2011, 30(1/2): 17-22. |
[38] | MAIJER D M, IKEDA T, COCKCROFT S L, et al.Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon.Mater. Sci. Eng. A, 2005, 390(1/2): 188-201. |
[39] | KRAZE A, MUIZNIEKS A, BERGFELDS K, et al.Reduction of silicon crust on the crucible walls in silicon melt purifying processes with electron beam technology by low-frequency travelling magnetic fields.Magnetohydrodynamics, 2011, 47(4): 369-383. |
[40] | CHOI S H, JANG B Y, LEE J S, et al.Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications.Renew. Energy, 2013, 54: 40-45. |
[41] | WEN S T, TAN Y, SHI S, et al.Thermal contact resistance between the surfaces of silicon and copper crucible during electron beam melting.Int. J. Therm. Sci., 2013, 74: 37-43. |
[42] | TAN Y, WEN S T, SHI S, et al.Numerical simulation for parameter optimization of silicon purification by electron beam melting. Vacuum, 2013, 95: 18-24. |
[43] | JIANG D C, TAN Y, SHI S, et al.Removal of phosphorus in molten silicon by electron beam candle melting.Mater. Lett., 2012, 78: 4-7. |
[44] | JIANG D C, TAN Y, SHI S, et al.Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting.Vacuum, 2012, 86(10): 1417-1422. |
[45] | JIANG D C, TAN Y, SHI S, et al.Research on new method of electron beam candle melting used for removal of P from molten Si.Mater. Res. Innov., 2011, 15(6): 406-409. |
[46] | TAN Y, SHI S, GUO X L, et al.Effect of cooling rate on solidification of electron beam melted silicon ingots.Vacuum, 2013, 89: 12-16. |
[47] | TAN Y, REN S Q, SHI S, et al.Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification.Vacuum, 2014, 99: 272-276. |
[48] | JIANG D C, REN S Q, SHI S, et al.Phosphorus removal from silicon by vacuum refining and directional solidification.J. Electron. Mater., 2014, 43(2): 314-319. |
[49] | JIANG D C, SHI S, TAN Y, et al.Research on distribution of aluminum in electron beam melted silicon ingot.Vacuum, 2013, 96: 27-31. |
[50] | YUGE N, HANAZAWA K, KATO Y.Removal of metal impurities in molten silicon by directional solidification with electron beam heating.Mater. Trans., 2004, 45(3): 850-857. |
[51] | LEE J K, LEE J S, JANG B Y, et al. Directional solidification behaviors of polycrystalline silicon by electron-beam melting. Jpn. J. Appl. Phys., 2013, 52(10): 10MB09-1-5. |
[52] | LEE J K, LEE J S, JANG B Y, et al. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power. Jpn. J. Appl. Phys., 2014, 53(8): 08NJ05-1-6. |
[53] | MEI P R, MOREIRA S P, CARDOSO E, et al.Purification of metallurgical silicon by horizontal zone melting.Sol. Energy Mater. Sol. Cells, 2012, 98: 233-239. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||