[1] LI L H, WANG Y J, ZHU Y, et al. Poly (lactide-co-glycolide)/ hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J. Mater. Sci.: Mater. Med., 2011, 22(8): 1873–1884.
[2] HOFMAN K, TUCKER N, STANGER J, et al. Effects of the molecular format of collagen on characteristics of electrospun fibres. J. Mater. Sci., 2012, 47(3): 1148–1155.
[3] JAISWAL A K, CHHABRA H, SONI V P, et al. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Mater. Sci. Eng., 2013, 33(4): 2376–2385.
[4] PEREZ M A, GUARINO V, CIRILLO V, et al. In vitro mineralization and bone osteogenesis in poly (ε-caprolactone)/gelatin nanofibers. J. Biomed. Mater. Res., 2012, 100(11): 3008–3019.
[5] WANG H Y, FENG Y K, FANG Z C, et al. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromol. Res., 2013, 21(8): 860–869.
[6] MENG Z X, LI H F, SUN Z Z, et al. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mat. Sci. Eng., 2013, 33(2): 699–706.
[7] SARAVANAN S, NETHALA S, PATTNAIK S, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Bio. Macromol., 2011, 49(2): 188–193.
[8] OKUYAMA K, NOGUCHI K, HANAFUSA Y, et al. Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int. J. Bio. Macromol., 1999, 26(4): 285–293.
[9] JAYAKUMAR R, PRABAHARAN M, NAIR S V, et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 2010, 55(7): 675–709.
[10] MU Q X, SU G X, LI L W, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Inter., 2012, 4(4): 2259–2266.
[11] ARTILES M S, ROUT C S, FISHER T S. Graphene-based hybridmaterials and devices for biosensing. Adv. Drug. Deliver. Rev., 2011, 63(14/15): 1352–1360.
[12] WANG G M, QIAN F, SALTIKOV C W, et al. Microbial reduction of graphene oxide by shewanella. Nano Res., 2011, 4(6): 563–570.
[13] LU B G, LI T, ZHAO H T, et al. Graphene-based composite materials beneficial to wound healing. Nanoscale, 2012, 4(9): 2978–2982.
[14] FARIA A F, MARTINEZ D S, MEIRA S M, et al. Anti-adhesion and antibacterial activity of silver nanoparticlessupported on graphene oxide sheets. Colloid Surface B, 2014, 113: 115–124.
[15] CARPIO I E, SANTOS C M, WEI X, et al. Toxicity of a polymer- graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale, 2012, 4(15): 4746–4756.
[16] TITOV A V, KRAL P, PEARSON R. Sandwiched graphene-membrane superstructures. ACS Nano, 2010, 4(1): 229–234.
[17] GOENKA S, SANT V, SANT S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 2014, 173: 75–88.
[18] SHI X T, CHANG H X, CHEN S, et al. Regulating cellular behavior on few-layer reduced graphene oxide films with well- controlled reduction states. Adv. Funct. Mater., 2012, 22(4): 751–759.
[19] REN H L, WANG C, ZHANG J L, et al. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano, 2010, 4(12): 7169–7174.
[20] SEABRA A B, PAULA A J, LIMA R, et al. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2): 159–168.
[21] SHIRKHANZADEH M. Direct formation of hydroxyapatite on cathodically polarized electrodes. J. Mater. Sci.: Mater. Med., 1998, 9(2): 67–72.
[22] MOHAMED K R, MOSTAFA A A. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Mat. Sci. Eng. C, 2008, 28(7): 1087–1099.
[23] CUI W G, LI X H, ZHOU S B, et al. Investigation on process parameters of electrospinning system through orthogonal experimental design. J. Appl. Polym. Sci., 2007, 103(5): 3105–3112.
[24] WANG Y B, LU X, LI D, et al. Hydroxyapatite/chitosan composite coatings on titanium supfaces by pulsed electrochemical deposition. Acta Polymerica Sinica, 2011(11): 1244–1252.
[25] 王 策, 卢晓峰. 有机纳米功能材料: 高压静电纺丝技术与纳米纤维. 北京: 科学出版社, 2011: 42–44.
[26] 丁彬, 俞建勇. 静电纺丝与纳米纤维. 北京: 中国纺织出版社, 2011: 41–44.
[27] SEABRA A B, PAULA A J, LIMA R, et al. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol, 2014, 27(2): 159-168.
[28] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano, 2010, 4(10): 5731–5736.
[29] FENG L Z, LIU Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317-324.
[30] KUILA T, BOSE S, KHANRA P, et al. Recent advances in graphene-based biosensors. Biosens Bioelectron, 2011, 26(12): 4637-4648. |