[1] |
PARK H L, LEE Y, KIM N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials, 2020, 32(15):1903558.
DOI
URL
|
[2] |
HASEGAWA T, OHNO T, TERABE K, et al. Learning abilities achieved by a single solid-state atomic switch. Advanced Materials, 2010, 22(16): 1831.
DOI
|
[3] |
BURGT Y, MELIANAS A, KEENE S T, et al. Organic electronics for neuromorphic computing. Nature Electronics, 2018, 1(7):386.
DOI
|
[4] |
HONG X T, HUANG Y L, TIAN Q L, et al. Two-dimensional perovskite-gated AlGaN/GaN high-electron-mobility-transistor for neuromorphic vision sensor. Advanced Science, 2022, 9(27):2202019.
DOI
URL
|
[5] |
CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 2011, 5(9):7669.
DOI
PMID
|
[6] |
ZHOU G, WANG Z, SUN B, et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Advanced Electronic Materials, 2022, 8(7):2101127.
DOI
URL
|
[7] |
YANG J T, GE C, DU J Y, et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Advanced Materials, 2018, 30(34):1801548.
DOI
URL
|
[8] |
HE Y, NIE S, LIU R, et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Advanced Materials, 2019, 31(21):1900903.
DOI
URL
|
[9] |
ZHU L Q, WAN C J, GUO L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nature Communications, 2014, 5: 3158.
|
[10] |
JIN C X, LIU W R, HUANG Y L, et al. Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letter, 2022, 120 (23): 233701.
DOI
URL
|
[11] |
QIU W J, SUN J, LIU W R, et al. Multi-gate-driven In-Ga-Zn-O memtransistors with a Sub-60 mV/decade subthreshold swing for neuromorphic and memlogic applications. Organic Electronics, 2020, 84: 105810.
|
[12] |
ZHONG G, ZI M, REN C, et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Applied Physics Letters, 2020, 117(9):092903.
DOI
URL
|
[13] |
KWON S M, CHO S W, KIM M, et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Advanced Materials. 2019, 31(52):1906433.
DOI
URL
|
[14] |
JIN C X, LIU W R, XU Y C, et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Letter, 2022, 22(8):3372.
DOI
URL
|
[15] |
JANG J T, KIM D, CHOI W S, et al. One transistor-two memristor based on amorphous indium-gallium-zinc-oxide for neuromorphic synaptic devices. ACS Applied Electronic Materials, 2020, 2(9):2837.
|
[16] |
PENG Z, WU F, JIANG L, et al. HfO2-based memristor as an artificial synapse for neuromorphic computing with tri-layer HfO2/BiFeO3/HfO2 design. Advanced Functional Materials, 2021, 31(48):2107131.
DOI
URL
|
[17] |
REN Z Y, KONG Y H, AI L, et al. Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. Journal of Materials Chemistry C, 2022, 10(18):7241.
DOI
URL
|
[18] |
ZHU Y X, PENG B C, ZHU L, et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 2022, 121(13):133502.
DOI
URL
|
[19] |
DENG X, WANG S Q, LIU Y X, et al. A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Advanced Functional Materials, 2021, 31(23):2101099.
DOI
URL
|
[20] |
TANIOKA A, TAZAWA T, MIYASAKA K, et al. Effects of water on the mechanical properties of gelatin films. Biopolymers: Original Research on Biomolecules, 1974, 13(4):753.
|
[21] |
SIONKOWSKA A, WISNIEWSKI M, SKOPINSKA J, et al. Molecular interactions in collagen and chitosan blends. Biomaterials, 2004, 25(5):795.
DOI
PMID
|
[22] |
HAIDER S, PARK S Y, LEE S H. Preparation, swelling and electro-mechano-chemical behaviors of a gelatin-chitosan blend membrane. Soft Matter, 2008, 4(3):485.
DOI
PMID
|
[23] |
HASELEU J, OMERBASIC D, FRENZEL H, et al. Water-induced finger wrinkles do not affect touch acuity or dexterity in handling wet objects. PLOS One, 2014, 9(1):e84949.
DOI
URL
|
[24] |
LI H, DING Y N, QIU H Y, et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 2022, 69(9):5363.
DOI
URL
|
[25] |
QIU H Y, HAO D D, LI H, et al. Transparent and biocompatible In2O3 artificial synapses with lactose-citric acid electrolyte for neuromorphic computing. Applied Physics Letters, 2022, 121(18):183301.
DOI
URL
|