[1] |
UDDIN A, TSUDA H, WU S, et al. Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel, 2008, 87(4): 451-459.
|
[2] |
ZHU Z, LIU H, SUN H, et al. Surfactant assisted hydrothermal and thermal decomposition synthesis of alumina microfibers with mesoporous structure. Chem. Eng. J., 2009, 155(3): 925-930.
|
[3] |
PHAM A L T, LEE C, DOYLE F M, et al. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol., 2009, 43(23): 8930-8935.
|
[4] |
REDDY C, CAO S A W, TAN O, et al. Preparation and Characterization of Iron Oxide-zirconia Nano Powder for Its Use as an Ethanol Sensor Material. Ceramics Transactions: Wiley- Ame-rican Ceramic Society, 2012: 67.
|
[5] |
BISWAL R C. Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B, 2011, 157(1): 183-188.
|
[6] |
GUARDIA P, LABARTA A, BATLLE X. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C, 2010, 115(2): 390-396.
|
[7] |
LAURENT S, FORGE D, PORT M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicoch-emical characterizations, and biological applications. Chem. Rev., 2008, 108(6): 2064.
|
[8] |
BREZESINSKI T, WANG J, TOLBERT SH, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater., 2010, 9(2): 146-151.
|
[9] |
VIVERO-ESCOTO J L, SLOWING I I, TREWYN B G, et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18): 1952-1967.
|
[10] |
CHEN D, HUANG F, CHENG Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv. Mater., 2009, 21(21): 2206-2210.
|
[11] |
ROSSINYOL E, ARBIOL J, PEIRÓ F, et al. Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens. Actuators B, 2005, 109(1): 57-63.
|
[12] |
ZHU Z, LIU H, SUN H, et al. PEG-directed hydrothermal synthesis of multilayered alumina microfibers with mesoporous structures. Microporous Mesoporous Mater., 2009, 123(1/2/3): 39-44.
|
[13] |
PELLEGRINO T, MANNA L, KUDERA S, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett., 2004, 4(4): 703-707.
|
[14] |
TORCHILIN V P, SHTILMAN M I, TRUBETSKOY V S, et al. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1994, 1195(1): 181-184.
|
[15] |
DENGLER E C, LIU J, KERWIN A, et al. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J. Controlled Release, 2013, 168(2): 209-224.
|
[16] |
MELLAERTS R, FAYAD E J, VAN DEN MOOTER G, et al. In Situ FT-IR investigation of etravirine speciation in pores of SBA-15 ordered mesoporous silica material upon contact with water. Mol. Pharmaceutics, 2013, 10: 567-573.
|
[17] |
CHEON J Y, AHN C, YOU D J, et al. Ordered mesoporous carbon-carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells. J. Mater. Chem., 2013, 1(4): 1270-1283.
|
[18] |
FANG Y, LV Y, CHE R, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc., 2013, 135(4): 1524-1530.
|
[19] |
CAI W, YU J, ANAND C, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem. Mater., 2011, 23(5): 1147-1157.
|
[20] |
CHEN C, AHN W S. CO2 capture using mesoporous alumina prepared by a Sol-Gel process. Chem. Eng. J., 2011, 166(2): 646-651.
|
[21] |
XU J, WANG A, WANG X, et al. Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Research, 2011, 4(1): 50-60.
|
[22] |
HOUNSLOW M, MUMTAZ H, COLLIER A, et al. A micro-mechanical model for the rate of aggregation during precipitation from solution. Chem. Eng. Sci., 2001, 56(7): 2543-2552.
|
[23] |
CLARIDGE J B, YORK A P, BRUNGS A J, et al. Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors. Chem. Mater., 2000, 12(1): 132-142.
|
[24] |
ZHAO Z, ZHANG W, REN P, et al. Insights into the topotactic conversion process from layered silicate RUB-36 to FER-type zeolite by layer reassembly. Chem. Mater., 2013, 25(6): 840-847.
|
[25] |
CUDENNEC Y, LECERF A. The transformation of Cu (OH)2 into CuO, revisited. Solid State Sciences, 2003, 5(11): 1471-1474.
|
[26] |
GOULD W, COOK F, WEBSTER G. Factors affecting urea hydrolysis in several Alberta soils. Plant Soil, 1973, 38(2): 393-401.
|
[27] |
LIAO H D, ZHANG W P, SUN X M, et al. Preparation and thermodynamic study of self-dispersal nano-AlOOH. Key Eng. Mater., 2012, 512:100-105.
|
[28] |
BURTON W K, CABRERA N, FRANK F. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. A, 1951, 243(866): 299-358.
|
[29] |
PENN R L, BANFIELD J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim Cosmochim Acta, 1999, 63(10): 1549-1557.
|
[30] |
NAGAHAMA K, OUCHI T, OHYA Y. Temperature‐induced hydrogels through self-Assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable scaffold for tissue engineering. Adv. Funct. Mater., 2008, 18(8): 1220-1231.
|
[31] |
ZHI H, LÜ C, ZHANG Q, et al. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans. Chem. Commun., 2009, 20: 2878-2880.
|
[32] |
LI Y, PENG C, LI L, et al. Self-assembled 3D Hierarchically structured γ-alumina by hydrothermal method. J. Am. Ceram. Soc., 2014, 97(1): 35-39.
|
[33] |
YU Z Q, CHANG D, LI C, et al. Blue photoluminescent properties of pure nanostructured γ-Al2O3. J. Mater. Res., 2001, 16(7): 1890-1893.
|