[1] Ramaseshan R, Sundarrajan S, Jose R, et al. Nanostructured ceramics by electrospinning. J. Appl. Phys., 2007, 102(11): 111101–1–17.[2] Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO2 hollow fibers using supramolecular assemblies. Chem. Mater., 2000, 12(6): 1523–1525.[3] Khitrov G. Organogelator templated synthesis of hollow TiO2 nanotubes. MRS Bull., 2000, 25(8): 3–4.[4] Hozumi A, Itoh T, Yokogawa Y, et al. Preparation of unidirectionally aligned hollow TiO2 fibers using electrostatically assembled short organic fibers. J. Mater. Sci. Lett., 2002, 21(11): 897–900.[5] Hou S F, Harrell C C, Trofin L, et al. Layer-by-layer nanotube template synthesis. J. Am. Chem. Soc., 2004, 126(18): 5674–5675.[6] Formhals A. Process and Apparatus for Preparing Artificial Threads. United States Patent, US1975504, 1934.[7] Dong Z X, Kennedy Scott J, Wu Y Q. Electrospinning materials for energy-related applications and devices. J. Power Sources, 2011, 196(11): 4886–4904.[8] Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett., 2004, 4(5): 933–938.[9] McCann J T, Li D, Xia Y N. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem., 2005, 15(7): 735–738.[10] Zhan S H, Chen D R, Jiao M L. Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls. J. Colloid Interf. Sci., 2008, 318(2): 331–336.[11] Li D, McCann J T, Xia Y N. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small, 2005, 1(1): 83–86.[12] Larsen G, Velarde-Ortiz R, Minchow K, et al. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via Sol-Gel chemistry and electrically forced liquid jets. J. Am. Chem. Soc., 2003, 125(5): 1154–1155.[13] Zhao Y, Cao X Y, Jiang L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc., 2007, 129(4): 764–765.[14] Chen H Y, Wang N, Di J C, et al. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir, 2010, 26(13): 11291–11296.[15] Zhang S H, Dong X T, Xu S Z, et al. electrospiningand characterization of rutile-typed TiO2 porous hollow nanofibers via electrospinning. Rare Metal Mat Eng, 2008(12): 2196–2200.[16] Zhang S H, Dong X T, Xu S Z, et al. Preparation and characterization of TiO2/SiO2 composite hollow nanofibers via an electrospinning technique. Acta Materiae Compositae Sinica, 2008(3): 138–143.[17] Katoch A, Kim S S. Synthesis of hollow silica fibers with porous walls by coaxial electrospinning method. J. Am. Ceram. Soc., 2012, 95(2): 553–556.[18] Panels Jeanne E, Joo Yong L. Incorporation of vanadium oxide in silica nanofiber mats via electrospinning and Sol-Gel synthesis. J. Nanomater., 2006.[19] Zhan S H, Chen D R, Jiao X L, et al. Facile fabrication of long alpha-Fe2O3, alpha-Fe and gamma-Fe2O3 hollow fibers using Sol-Gel combined co-elecrospinning technology. J. Colloid Interf. Sci., 2007, 308(1): 265–270.[20] Zhan S H, Li Y, Yu H B. LiCoO2 hollow nanofibers by co-electrospinning Sol-Gel precursor. J. Dispersion Sci. Technol., 2008, 29(5): 702–705.[21] Zhan S H, Li Y, Yu H B. Sol-Gel co-electrospun LiNiO2 hollow nanofibers. J. Dispersion Sci. Technol., 2008, 29(6): 823–826.[22] Di J C, Chen H Y, Wang X F, et al. Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem. Mater., 2008, 20(11): 3543–3545.[23] 张双虎. 同轴静电纺丝法制备中空纳米纤维及纳米电缆与表征. 吉林: 长春理工大学博士论文, 2007.[24] Dai H Q, Gong J, Kim H, et al. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology, 2002, 13(5): 674–677.[25] Kang W M, Cheng B W, Li Q X, et al. A new method for preparing alumina nanofibers by electrospinning technology. Textile Res. J., 2011, 81(2): 148–155.[26] Mahapatra A, Mishra B G, Hota G. Synthesis of ultra-fine alpha-Al2O3 fibers via electrospinning method. Ceram. Int., 2011, 37(7): 2329–2333.[27] Wei S H, Zhang Y, Zhou M H. Toluene sensing properties of SnO2-ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Commun., 2011, 151(12): 895–899.[28] Li X H, Shao C L, Liu Y C, et al. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. J. Chem. Phys., 2008, 129(11): 114708–1–5.[29] Dayal P, Kyu T. Porous fiber formation in polymer-solvent system undergoing solvent evaporation. J. Appl. Phys., 2006, 100(4): 43512–1–6.[30] Wei S H, Zhou M H, Du W P. Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens. Actuators B, 2011, 160(1): 753–759.[31] Zhang Z Y, Li X H, Wang C H, et al. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C, 2009, 113(45): 19397–19403.[32] Zhang Y F, Yang J, Li Q, et al. Preparation of Ga2O3 nanoribbons and tubes by electrospinning. J. Cryst. Growth, 2007, 308(1): 180–184.[33] Sun Y, Li J Y, Tan Y, et al. Fabrication of aluminum nitride (AlN) hollow fibers by carbothermal reduction and nitridation of electrospun precursor fibers. J. Alloys Compd., 2009, 471(1/2): 400–403.[34] Smiciklas A D, Kirkendall E O. Zinc diffusion in alphabrass. Trans. AIME, 1947, 171: 130–142.[35] Aldinger F. Controlled porosity by an extreme kirkendall effect. Acta Metall., 1974, 22(7): 923–928.[36] Jin F H, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the kirkendall effect. Nat. Mater., 2006, 5(8): 627–631.[37] Murray B J, Li O, Newberg J T, et al. Shape- and size-selective electrochemical synthesis of dispersed silver(i) oxide colloids. Nano Lett., 2005, 5(11): 2319–2324.[38] Xiang H F, Long Y H, Yu X L, et al. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. Cryst. Eng. Comm., 2011, 13(15): 4856–4860.[39] Xia X, Dong X J, Wei Q F, et al. Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Exp. Poly. Lett., 2012, 6(2): 169–176.[40] Kim W S, Lee B S, Kim D H, et al. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 2010, 21(24): 245605–1–7.[41] Cho N G, Yang D J, Jin M J, et al. Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators B, 2011, 160(1): 1468–1472.[42] Choi S H, Ankonina G, Youn D Y, et al. Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano, 2009, 3(9): 2623–2631.[43] Peng Q, Sun X Y, Spagnola Joseph C, et al. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett., 2007, 7(3): 719–722.[44] Peng Q, Sun X Y, Spagnola Joseph C, et al. Bi-directional kirkendall effect in coaxial microtuble nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano, 2009, 3(3): 546–554.[45] Nagamine S, Ochi S, Ohshima M. Fabrication of TiO2 hollow fibers with surface nanostructure. Mater. Res. Bull., 2011, 46(12): 2328–2332. |