[1] Wang A J, Lu Y P, Sun R X. Recent progress on the fabrication of hollow microspheres. Mater. Sci. Eng. A,2007, 460-461: 1-6.
[2] 梁志武, 郝广杰, 申小义, 等. 中空结构聚合物微粒的制备方法. 高分子通报, 2003 (5): 36-41.
[3] Hu Y, Ge J, Sun Y, et al. A self-templated approach to TiO2 microcapsules. Nano Lett., 2007, 7(6): 1832-1836.
[4] Chen J F, Ding H M, Wang J X, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials, 2004, 25(4): 723-727.
[5] Zhang Y, Chu Y, Yang Y, et al. Fabrication of polystyrene-CPbS core-shell and hollow PbS microspheres with sulfonated polystyrene templates. Colloid. Polym. Sci., 2007, 285(9): 1061-1066.
[6] Zheng J, Song X, Zhang Y, et al. Nano-sized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reactionJ. J. Solid State Chem., 2007, 180(1): 276-283.
[7] Banerjee S, Premchandran R, Tata M, et al. Polymer precipitation using a micellar nonsolvent: the role of surfactant polymer interactions and the development of a microencapsulation technique. Ind. Eng. Chem. Res.,1996, 35(9): 3100-3107.
[8] Cha J N, Bartl M H, Wong M S, et al. Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators. Nano Lett., 2003, 3(7): 907-911.
[9] 刘桂霞, 洪广言, 王进贤, 等. 无机中空球壳材料的制备方法. 化学通报, 2006(10): 749-754.
[10] 白飞燕, 方仕江. 模板法技术制备中空聚合物微球的进展. 胶体与聚合物, 2004, 23(4): 26-30.
[11] 甘治平, 官建国. 硬模法制备无机空心球的研究进展. 材料导报, 2007, 21(5): 105-108.
[12] 曾 文, 徐 宏, 古宏晨. 氧化硅空心微球的制备及表面形貌的调控. 动能材料, 2008, 39(6): 975-978.
[13] Yu J, Liu W, Yu H. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Grow. Design, 2008, 8(3): 930-934.
[14] 余承忠, 范 杰, 赵东元(YU Cheng-Zhong, et al). 利用嵌段共聚物及无机盐合成高质量的立方相、大孔径介孔氧化硅球. 化学学报(Acta Chim. Sinica), 2002, 60(8): 1357-1360.
[15] Zhu Y, Shi J, Chen H, et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Micro. Meso. Mater., 2005, 84(1): 218-222.
[16] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548.
[17] Parida K M, Rath D. Structural properties and catalytic oxidation of benzene to phenol over CuO-impregnated mesoporous silica. Applied Catalysis A: General, 2007. 321(2): 101-108.
[18] Uphade B, Akita T, Nakamura T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48. J. Catal., 2002, 209(2): 331-340.
[19] Ma Y, Qi L, Ma J, et al. Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids Sur A: Physicochem. Eng. Aspects, 2003, 229(1): 1-8.
[20] 格林伍德N N. 元素化学(下册). 北京: 高等教育出版社, 1996: 113.
[21] Kim S S, Karkamkar A, Pinnavaia T J, et al. Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates. J. Phys. Chem. B, 2001, 105(32): 7663-7670.
[22] Todorova S, Pārvulescu V, Kadinov G, et al. Metal states in cobalt- and cobalt-vanadium-modified MCM-41 mesoporous silica catalysts and their activity in selective hydrocarbons oxidation. Microporous Mesoporous Mater., 2008, 113(1/2/3): 22-30.
[23] Zhang Q, Wang Y, Itsuki S, et al. Manganese-containing MCM-41 for epoxidation of styrene and stilbene. J. Mol. Catal. A: Chem., 2002, 188(1/2): 189-200. |