无机材料学报 ›› 2020, Vol. 35 ›› Issue (10): 1142-1148.DOI: 10.15541/jim20200011 CSTR: 32189.14.10.15541/jim20200011
所属专题: 能源材料论文精选(三):热电与燃料电池(2020)
收稿日期:
2020-01-08
修回日期:
2020-03-04
出版日期:
2020-10-20
网络出版日期:
2020-03-20
作者简介:
吕子夜(1995-), 男, 硕士研究生. E-mail: 2542990751@qq.com。
基金资助:
LYU Ziye(),TANG Yiping,CAO Huazhen,ZHENG Guoqu,HOU Guangya(
)
Received:
2020-01-08
Revised:
2020-03-04
Published:
2020-10-20
Online:
2020-03-20
About author:
LYU Ziye(1995-), male, Master candidate. E-mail: 2542990751@qq.com
Supported by:
摘要:
本研究以细菌纤维素基碳气凝胶(CA)为载体材料, 通过水热法制备了Ni-Co-S/CA复合气凝胶, 掺入钒元素调控材料的微观结构和性能。研究结果表明: Ni-Co-S的主要物相为NiCo2S4, 次相为NiS2。随着镍钴盐浓度的增大, 负载量增加, 电催化峰电流密度先升后降。当镍钴盐浓度较低时, 掺微量钒后, Ni-Co-S从结晶度较高的球形颗粒转变成低结晶度的方形微粒, 电催化活性和稳定性都得到改善。在0.01 mol/L镍钴盐溶液中掺入3mol% V, 制备的电极对甲醇具有最优的催化氧化性能, 与不掺V的样品相比, 其峰电流密度(78.18 mA/cm 2)提升了至少45.7%。Ni-Co-S/CA复合气凝胶电极具有轻质、高孔隙率等优点, 有望用于便携式直接甲醇燃料电池。
中图分类号:
吕子夜, 唐谊平, 曹华珍, 郑国渠, 侯广亚. V掺杂对Ni-Co-S/细菌纤维素基碳气凝胶电催化性能的影响[J]. 无机材料学报, 2020, 35(10): 1142-1148.
LYU Ziye, TANG Yiping, CAO Huazhen, ZHENG Guoqu, HOU Guangya. Effect of V Doping on Electrocatalytic Performance of Ni-Co-S on Bacterial Cellulose-derived Carbon Aerogel[J]. Journal of Inorganic Materials, 2020, 35(10): 1142-1148.
图1 (a) CA、NCS-2、NCS-10和V3-NCS-1的XRD图谱; NCS-2的XPS (b)全谱、(c) Ni2p、(d) Co2p和(e) S2p谱图
Fig. 1 (a) XRD patterns of CA, NCS-2, NCS-10 and V3-NCS-1 samples; (b) Total survey, (c) Ni2p, (d) Co2p and (e) S2p XPS spectra of NCS-2
图2 (a)碳气凝胶, (b) NCS-1, (c, d) NCS-2, (e) NCS-5和(f) NCS-10的SEM照片
Fig. 2 SEM images of (a) carbon aerogels, (b) NCS-1, (c, d) NCS-2, (e) NCS-5 and (f) NCS-10
图3 NCS-2的(a~b)高分辨TEM照片, (b) HAADF-STEM照片以及相应(c) EDS元素面分布图
Fig. 3 (a-b) High-resolution TEM image, (b) HAADF-STEM image and (c) EDS element mappings of NCS-2
图5 (a) CA、NCS-n (n=1, 2, 10)和V3-NCS-n (n=1,2)的CV曲线; (b) NCS-n (n=1, 2), Vx-NCS-n (x=3, 5, 10; n=1,2)的峰值电流密度和平均负载量对比图; (c) V3-NCS-1在1 mol/L KOH中, 以10、20、30、40、50 mV/s扫描的CV曲线, 插图为峰值电流密度与扫速平方根之间的关系; (d) V3-NCS-1的峰电流密度与甲醇浓度的关系曲线
Fig. 5 (a) CV curves of CA, NCS-n (n=1, 2, 5, 10) and V3-NCS-n (n=1,2); (b) Comparison of the peak current density and the average load amount of NCS-n (n=1, 2), Vx-NCS-n (x=3, 5, 10; n=1,2); (c) CV curves of V3-NCS-1 in 1 mol/L KOH at 10, 20, 30, 40, 50 mV/s sweep speed with inset showing the relationship between the peak current density and the square root of the sweep speed; (d) Relationship between the methanol concentration and the peak current density of V3-NCS-1
图6 NCS-2和V3-NCS-1电极循环1000次的(a)氧化峰电流密度变化曲线、(b)计时电流测试曲线和(c)循环前后的XRD图谱; NCS-2试样中负载的颗粒1000次循环后的(d) TEM照片, (e) HAADF-STEM照片以及相应的EDS元素分布图
Fig. 6 (a) Oxidation peak current densities and (b) I-t curves of NCS-2 and V3-NCS-1 electrodes varied within 1000 CV cycles, and (c) XRD patterns of NCS-2 and V3-NCS-1 before and after 1000 cycles; (d) TEM image, (e) HAADF-STEM image and corresponding EDS element mappings of the particles loaded in NCS-2 after 1000 cycles
[1] |
GONG S, JIANG Z, SHI P , et al. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ ultrathin graphitic carbon nitride. Applied Catalysis B: Environmental , 2018,238:318-327.
DOI URL |
[2] |
LIU J, HE T, WANG Q , et al. Confining ultrasmall bimetallic alloys in porous N-carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn-air batteries. Journal of Materials Chemistry A , 2019,7(20):12451-12456.
DOI URL |
[3] |
LIAO K, CHEN S, WEI H , et al. Micropores of pure nanographite spheres for long cycle life and high-rate lithium-sulfur batteries. Journal of Materials Chemistry A, 2018,6(45):23062-23070.
DOI URL |
[4] |
ZHAI C Y, DU Y K, ZHU M S . Noble metal/semiconductor photoactivated electrodes for direct methanol fuel cell. Journal of Inorganic Materials, 2017,32(9):897-903.
DOI URL |
[5] | LEI Y, WANG Y, LIU Y , et al. Realizing the atomic active center for hydrogen evolution electrocatalysts. Angewandte Chemie International Edition. Realizing the atomic active center for hydrogen evolution electrocatalysts. Angewandte Chemie International Edition, 2020, in press, doi: 10.1002/anie.201914647. |
[6] |
MANSOR M, TIMMIATI S N, LIM K L , et al. Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. International Journal of Hydrogen Energy , 2019,44(29):14744-14769.
DOI URL |
[7] |
KOENIGSMANN C, WONG S S . One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy & Environmental Science, 2011,4(4):1161-1176.
DOI URL |
[8] |
TIWARI J N, TIWARI R N, SINGH G , et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy , 2013,2(5):553-578.
DOI URL |
[9] |
LI C, MALGRAS V, ALSHEHRI SM , et al. Electrochemical synthesis of mesoporous Pt nanowires with highly electrocatalytic activity toward methanol oxidation reaction. Electrochimica Acta , 2015,183:107-111.
DOI URL |
[10] |
ZHENG Y, ZHAN H, TANG H , et al. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction. Electrochimica Acta, 2017,248:349-355.
DOI URL |
[11] |
CHEN D, HE Z, PEI S , et al. Pd nanoparticles supported on N and P dual-doped graphene as an excellent composite catalyst for methanol electro-oxidation. Journal of Alloys and Compounds, 2019,785:781-788.
DOI URL |
[12] | LUO S, GU R, SHI P , , et al. π-π interaction boosts catalytic oxygen evolution by self-supporting metal-organic frameworks. Journal of Power Sources. π-π interaction boosts catalytic oxygen evolution by self-supporting metal-organic frameworks. Journal of Power Sources, 2020, 448: 227406-1-10. |
[13] |
GUO X, LIANG T, ZHANG D , et al. Facile fabrication of 3D porous nickel networks for electro-oxidation of methanol and ethanol in alkaline medium. Materials Chemistry and Physics , 2019,221:390-396.
DOI URL |
[14] |
LI J, LUO F, ZHAO Q , et al. Crystalline nickel boride nanoparticle agglomerates for enhanced electrocatalytic methanol oxidation. International Journal of Hydrogen Energy , 2019,44(41):23074-23080.
DOI URL |
[15] |
ZHANG J, XU C, ZHANG D , et al. Facile synthesis of a nickel sulfide (NiS) hierarchical flower for the electrochemical oxidation of H2O2 and the methanol oxidation reaction (MOR). Journal of the Electrochemical Society, 2017,164:B92-B96
DOI URL |
[16] | YUAN G, NIU X, CHEN Z , et al. Self-supported hierarchical Shell@Core Ni3S2@Ni foam composite electrocatalyst with high efficiency and long-term stability for methanol oxidation. ChemElectro Chem, 2018,5(17):2376-2382. |
[17] |
CHEN Z, WANG Q, ZHANG X , et al. N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all- solid-state Zn-air batteries. Science Bulletin , 2018,63(9):548-555.
DOI URL |
[18] |
WANG Q, YE K, XU L , et al. Carbon nanotube-encapsulated cobalt for oxygen reduction: integration of space confinement and N-doping. Chemical Communications , 2019,55(98):14801-14804.
DOI URL PMID |
[19] |
YANG J H, SONG X, ZHAO X , et al. Nickel phosphate materials regulated by doping cobalt for urea and methanol electro-oxidation. International Journal of Hydrogen Energy , 2019,44(31):16305-16314.
DOI URL |
[20] |
WU F, ZHANG Z, ZHANG F , et al. Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation. Electrochimica Acta , 2018,287:115-123.
DOI URL |
[21] |
REZAEE S, SHAHROKHIAN S . Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed- metallic MOFs and their application for electrocatalytic oxidation of methanol. Applied Catalysis B: Environmental, 2019,244:802-813.
DOI URL |
[22] |
JIA J Y, ZHANG W X, CHANG L , et al. Synthesis and photocatalytic activity of vanadium doped titania hollow microspheres. Journal of Inorganic Materials, 2009,24(4):671-674.
DOI URL |
[23] |
YAN Y, LI B, GUO W , et al. Vanadium based materials as electrode materials for high performance supercapacitors. Journal of Power Sources , 2016,329:148-169.
DOI URL |
[24] |
XU X, XIONG F, MENG J , , et al. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Advanced Functional Materials. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Advanced Functional Materials, 2020,30(10): 1904398-1-36.
DOI URL PMID |
[25] |
MA L, ZHANG K, WANG S , et al. Vanadium doping over Ni3S2 nanosheet array for improved overall water splitting. Applied Surface Science, 2019,489:815-823.
DOI URL |
[26] |
LEI C, ZHOU W, FENG Q , et al. Charge engineering of Mo2C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H2 evolution. Nano-Micro Letters, 2019,11(1):45.
DOI URL |
[27] |
CALVILLO L, GANGERI M, PERATHONER S , et al. Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: effect of the surface chemistry of the support. International Journal of Hydrogen Energy , 2011,36(16):9805-9814.
DOI URL |
[28] |
SHI M, ZHANG W, LI Y , et al. Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation. Chinese Journal of Catalysis , 2016,37(11):1851-1859.
DOI URL |
[29] |
WANG Q, LEI Y, ZHU Y , et al. Edge defect engineering of nitrogen- doped carbon for oxygen electrocatalysts in Zn-Air batteries. ACS Applied Materials & Interfaces , 2018,10(35):29448-29456.
DOI URL PMID |
[30] | MA L N, ZHAO N, BI Z J , et al. Bacterial cellulose based nano-biomaterials for energy storage applications. Journal of Inorganic Materials , 2019,35(2):145-157. |
[31] |
WANG Y, LIU Y, XIA K , et al. NiCo2S4 nanoparticles anchoring on polypyrrole nanotubes for high-performance supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2019,840:242-248.
DOI URL |
[32] |
BAIG F, HAMEED KHATTAK Y, JEMAI S , et al. Hydrothermal syntheses of vanadium doped α-Fe2O3 cubic particles with enhanced photoelectrochemical activity. Solar Energy, 2019,182:332-339.
DOI URL |
[33] |
ZHOU Y, LIU P, JIANG F , et al. Vanadium sulfide sub-microspheres: a new near-infrared-driven photocatalyst. Journal of Colloid and Interface Science , 2017,498:442-448.
DOI URL PMID |
[34] | ZHANG H, LI H, SUN Z , , et al. One-step hydrothermal synthesis of NiCo2S4 nanoplates/nitrogen-doped mesoporous carbon composites as advanced electrodes for asymmetric supercapacitors. Journal of Power Sources., 2019, 439: 227082-1-9. |
[35] |
HOU G Y, XIE Y Y, WU L K , et al. Electrocatalytic performance of Ni-Ti-O nanotube arrays/NiTi alloy electrode annealed under H2 atmosphere for electro-oxidation of methanol. International Journal of Hydrogen Energy, 2016,41(22):9295-9302.
DOI URL |
MABAYOJE O, SHOOLA A, WYGANT B R , et al. The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Letters , 2016,1(1):195-201.
DOI URL |
[1] | 马丽娜,石川,赵宁,毕志杰,郭向欣,黄玉东. 细菌纤维素基纳米生物材料在储能领域的应用[J]. 无机材料学报, 2020, 35(2): 145-157. |
[2] | 徐明丽, 段 奔, 张英杰, 杨国涛, 董 鹏, 夏书标, 杨显万. 碳纳米管载体改性条件对Pt纳米粒子电催化氧化性能的影响[J]. 无机材料学报, 2015, 30(9): 931-936. |
[3] | 王改花, 代 波, 马拥军, 任 勇. 一种新型碳纳米纤维的电磁性能研究[J]. 无机材料学报, 2013, 28(4): 398-402. |
[4] | 常少辉, 刘学超, 黄 维, 周天宇, 杨建华, 施尔畏. 正对电极结构型碳化硅光导开关的制备与性能研究[J]. 无机材料学报, 2012, 27(10): 1058-1062. |
[5] | 曾 鑫,原鲜霞,夏晓芸,杜 娟,张慧娟,马紫峰. 微波合成条件对催化剂Pt2Mo/C的结构和甲醇氧化催化性能的影响[J]. 无机材料学报, 2010, 25(4): 359-364. |
[6] | 张晓勇,晁明举,梁二军,胡帆,袁斌. 钒掺杂纳米TiO2薄膜的结构和光吸收性能[J]. 无机材料学报, 2009, 24(1): 34-38. |
[7] | 严成锋,施尔畏,陈之战,李祥彪,肖兵. 超快大功率SiC光导开关的研究[J]. 无机材料学报, 2008, 23(3): 425-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||