[1] Li H Y, Zhai W Y, Chang J. Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/Wollastonite composite scaffolds. J. Biomater. Appl., 2009, 24(3): 231-246.
[2] Huan Z G, Chang J. Calcium-phosphate-silicate composite bone cement: self-setting properties and in vitro bioactivity. J. Mater. Sci. Mater. Med., 2009, 20(4): 833-841.
[3] Huang Y, Chang J, Dai K R, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials, 2009, 30(28): 5041-5048.
[4] Ni S Y, Lin K L, Chang J, et al. β-CaSiO3/β-Ca3(PO4)2 composite materials for hard tissue repair: In vitro studies. J. Biomed. Mater. Res. A, 2008, 85(1): 72-82.
[5] Varanasi V G, Saiz E, Loomer P M, et al. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomaterialla, 2009, 5(9):-3536-3547.
[6] Wei J, Wu X H, Liu C S, et al. Fabrication of bioactive scaffold of poly(ε-caprolactone) and nanofiber wollastonite composite. J. Am. Ceram. Soc., 2009,-92(5): 1017-1023.
[7] Liu Q H, Chang J, Cui L, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials, 2008, 29(36): 4792-4799.
[8] Au A Y, Au R Y, Demko J L, et al. Consil (R) bioactive glass particles enhance osteoblast proliferation and selectively modulate cell signaling pathways in vitro. J. Biomed. Mater. Res. A, 2010, 94 (2): 380-388.
[9] Xu S F, Chang J, Lu J X, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17): 2588-2596.
[10] Liu C S, Shen W, Gu Y F, et al. Mechanism of the hardening process for a hydroxyapatite cement. J. Biomed. Mater. Res., 1997, 35(1): 75-80.
[11] Ginebra M P, Espanol M, Montufar E B, et al. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomaterialla, 2010, 6(8): 2863-2873.
[12] Wei J, Jia J F, Wu F, et al. Hierarchically microporous/ macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials, 2010, 31(6): 1260-1269.
[13] Hahn B D, Lee J M, Park D S, et al. Aerosol deposition of silicon- substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films , 2010, 518(8): 2194-2199.
[14] Lopez-Alvarez M, Solla EL, Gonzalez P, et al. Silicon- hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci. Mater. Med., 2009, 20(5): 1131-1136.
[15] Guo H, Su J C, Wei J, et al. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialla, 2009,-5(1): 268-278.
[16] Wu F, Wei J, Guo H, et al. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomaterialla, 2008, 4(6): 1873-1884.
[17] Liu C S, Shao H F, Chen F Y, et al. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials, 2006, 27(29): 5003-5013.
[18] Wei J, Heo S J, Kim D H, et al. Comparison of physical, chemical and cellular responses to nano- and micro-sized calcium silicate/poly(epsilon-caprolactone) bioactive composites. J. R. Soc. Interface, 2008, 5(23): 617-630. |