[1] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38.
|
[2] |
CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspension. Bull Environ Contam Toxicol, 1976, 16(6): 697-701.
|
[3] |
ZHOU WEN-QIAN, LU YU-MING, CHEN CHANG-ZHAO, et al. Effect of Li-doped TiO2 compact layers for dye sensitized solar cells. Journal of Inorganic Materials, 2011, 26(8): 819-822.
|
[4] |
LANG L M, WU D, XU Z. Controllable fabrication of TiO2 1D-nano/micro structures: solid, hollow, and tube-in-tube fibers by electrospinning and the photocatalytic performance. Chem -Eur. J., 2012, 18(34): 10661-10668.
|
[5] |
BEDFORD N M, PELAEZ M, HAN C, et al. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem. , 2012, 22(25): 12666-12674.
|
[6] |
KITANO M, MATSUOKA M, UESHIMA M, et al. Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A: General, 2007, 325(1): 1-14.
|
[7] |
ZHANG QING-HONG. Progress on TiO2-based nanomaterials and its utilization in the clean energy technology. Journal of Inorganic Materials, 2012, 27(1): 1-10.
|
[8] |
HAGFELDT A, BOSCHLOO G, SUN L C, et al. Dye-sensitized solar cells. Chem. Rev. , 2010, 110(11): 6595-6663.
|
[9] |
CAO H M, ZHU Y H, YANG X L, et al. Fabrication of CuInS2 -TiO2 composite fibers by using electrospinning coupled with solvothermal method. RSC Adv., 2012, 2(10): 4055-4058.
|
[10] |
CHEN L, ZHANG S C, WANG L Q, et al. Photocqtalytic activity of Zr:SrTiO3 under UV illumination. J. Cryst. Growth, 2009, 311(3): 735-737.
|
[11] |
CAO T P, LI Y J, SHAO C L, et al. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Materials Research Bulletin, 2010, 45(10): 1406-1412.
|
[12] |
CAO T P, LI Y J, SHAO C L, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6): 2946-2952.
|
[13] |
CAO T P, LI Y J, SHAO C L, et al. Bi4Ti3O12nanosheets/TiO2 submicron fibers heterostructure: in site fabrication and high visible light photocatalytic activity. J. Mater. Chem. , 2011, 21(19): 6922-6927.
|
[14] |
LEE J C, KIM T G, CHOI H J.Enhanced photochemical response of TiO2/CdSe heterostructured nanowires.Cryst. Growth Des. , 2007, 7(12): 2588-2593.
|
[15] |
QIAN S S, WANG C S, LIU W J, et al. An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J. Mater. Chem. , 2011, 21(13): 4945-4952
|
[16] |
CAO X B, LAN X M, GUO Y, et al. Preparation and characterization of bifunctional ZnO/ZnS nanoribbons decorated by gamma-Fe2O3 clusters. J. Phys. Chem. C, 2007, 111(51): 18958-18964.
|
[17] |
MASUDA Y, IEDA S, KOUMOTO K. Site-selective deposition of anatase TiO2 in an aqueous solution using a seed layer. Langmuir, 2003, 19(10): 4415-4419.
|
[18] |
YU H G, LEE S C, YU J G, et al. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J. Mol. Cata. A, 2006, 246(1/2): 206-211.
|
[19] |
KABALNOV ALEXEY. Ostwald ripening and related phenomena. J. Disper. Sci. Technol. , 2001, 22(1): 1-12.
|
[20] |
ZHAO BIN, LIN LIN, CHEN CHAO, et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials. Journal of Inorganic Materials, 2013, 28(7): 683-690.
|
[21] |
OTSUKA-YAO-MATSUO S, UEDA M. Visible light-induced photobleaching of methylene blue aqueous solution using (Sr1-xLax)TiO3+ δ-TiO2 composite powder.J. Photoch. Photobio. A: Chem. , 2004, 168(1/2): 1-6.
|