无机材料学报 ›› 2013, Vol. 28 ›› Issue (5): 459-468.DOI: 10.3724/SP.J.1077.2013.12506 CSTR: 32189.14.SP.J.1077.2013.12506
• • 下一篇
鲍 艳, 杨永强, 马建中
收稿日期:
2012-08-17
修回日期:
2012-12-07
出版日期:
2013-05-10
网络出版日期:
2013-04-22
作者简介:
鲍 艳(1981–), 女, 副教授. E-mail: baoyan0611@126.com
基金资助:
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong
Received:
2012-08-17
Revised:
2012-12-07
Published:
2013-05-10
Online:
2013-04-22
About author:
BAO Yan. E-mail: baoyan0611@126.com
Supported by:
摘要:
中空结构材料具有低密度、高比表面积、可以容纳客体分子等特点被广泛用于环境保护、生物医药、电子等领域。模板法具有简单、重复率高、预见性好等诸多优点, 在制备中空结构材料的过程中被广泛采用。根据所使用模板性质的不同, 模板法又可分为传统模板法和自模板法两类。本文对模板法制备中空结构材料的研究进行了综述, 首先阐述了硬模板法和软模板法两种传统模板法制备中空结构材料的研究进展, 并在此基础上重点综述和评价了奥斯特瓦尔德熟化法、柯肯达尔效应法、电化学置换法和化学刻蚀法四种自模板法制备中空结构材料的研究进展, 最后, 对模板法制备中空结构材料的发展前景进行了展望。
中图分类号:
鲍 艳, 杨永强, 马建中. 模板法制备中空结构材料的研究进展[J]. 无机材料学报, 2013, 28(5): 459-468.
BAO Yan, YANG Yong-Qiang, MA Jian-Zhong. Research Progress of Hollow Structural Materials Prepared via Templating Method[J]. Journal of Inorganic Materials, 2013, 28(5): 459-468.
图3 Ostwald熟化按(a)对称及(b)不对称机理制备中空结构的示意图[18]
Fig. 3 A diagram of the preparation of hollow structures via Ostwald ripening based on (a) symmetric and (b) asymmetric mechanism[18]
[1] | BIAN Bing-Xin, SONG Zhi-Wei, AI Shu-Yan. The properties and application of hollow fly ash spheres. Coal Process & Comprehensive Utilization, 1997, 17(3): 102-110. |
[2] | Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114. |
[3] | Li L, Ding J, Xue J M. Macroporous silica hollow microspheres as nanoparticle collectors. Chem. Mater., 2009, 21(15): 3629-3637. |
[4] | Huang C C, Huang W, Yeh C S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials, 2011, 32(2): 556-564. |
[5] | Yang M, Wang G, Yang Z Z. Synthesis of hollow spheres with mesoporous silica nanoparticles shell. Mater. Chem. Phys., 2008, 111(1): 5-8. |
[6] | Pu H T, Zhang X, Yuan J J, et al. A facile method for the fabrication of vinyl functionalized hollow silica spheres. J. Colloid. Interface Sci., 2009, 331(2): 389-393. |
[7] | Liu D, Sasidharan M, Nakashima K. Micelles of poly (styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres. J. Colloid. Interface Sci., 2011, 358(2): 354-359. |
[8] | Wang Z X, Chen M, Wu L M. Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates. Chem. Mater., 2008, 20(10): 3251-3253. |
[9] | CAO Feng, LI Dong-Xu, GUAN Zi-Sheng. Preparation of silica gollow microspheres with special surface morphology by bio-template method. Journal of Inorganic Materials, 2009, 3(24): 501-506. |
[10] | ZHANG Bo, REN Tian-Rui, WU Hai-Qing. Preparation of hollow silica sicrospheres with Synechocystis sp. PCC 6803 as bio-template. The Chinese Journal of Process Engineering, 2011, 11(1): 107-112. |
[11] | Nomura T, Morimoto Y, Ishikawa M, et al. Synthesis of hollow silica microparticles from bacterial templates. Adv. Powder. Technol., 2010, 21(2): 8-12. |
[12] | Wei L, Lei Y L, Fu H B, et al. Fullerene hollow microspheres prepared by bubble-templates as sensitive and selective electrocatalytic sensor for biomolecules. ACS. Appl. Mater. Interfaces, 2012, 4(3): 1594-1600. |
[13] | Yan C L, Xue D F. Polyhedral construction of hollow ZnO microspheres by CO2 bubble templates. J. Alloys Compd., 2007, 431(1/2): 241-245. |
[14] | Wang L Y, Wang L, Fang Z. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry, 2006, 12(24): 6341-6347. |
[15] | Wu W, Xiao X H, Zhang S F, et al. One-pot reaction and subsequent annealing to synthesis hollow spherical magnetite and maghemite nanocages. Nanoscale. Res. Lett., 2009, 4(8): 926-931. |
[16] | Voorhees P W. The theory of ostwald ripening. J. Stat. Phys., 1985, 38(1/2): 231-256. |
[17] | Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B, 2004, 108(11): 3492-3495. |
[18] | Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Inorg. Nano. Struct., 2005, 1(5): 566-571. |
[19] | Jang E J, Lim E K, Choi J, et al. Br-assisted Ostwald ripening of Au nanoparticles under H2O2 redox. Cryst. Growth. Des., 2012, 12(1): 37-39. |
[20] | Gentry S T, Kendra S F, Bezpalko M W. Ostwald ripening in metallic nanoparticles: stochastic kinetics. J. Phys. Chem. C, 2011, 115(26): 12736-12741. |
[21] | CHEN Kai, MA Ding, HUANG Wei-Xin, et al. Hydrothermal syntheses of hollow carbon nano-materials by Ostwald ripening. Chemical Journal of Chinese Universities, 2008, 29(8): 1501-1504. |
[22] | Chen S, Zhang X L, Hou X M, et al. One-pot synthesis of hollow PbSe single-crystalline nanoboxes via gas bubble assisted Ostwald ripening. Crys. Growth. Des., 2010, 10(3): 1257-1262. |
[23] | Liu S Q, Xie M J, Li Y X, et al. Novel seaurchin-like hollow core-shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sens. Actuators. B: Chemical, 2010, 151(1): 229-235. |
[24] | Li Jing, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc., 2007, 129(51): 15839-15847. |
[25] | Wang Xi, Yuan F L, Hu P, et al. Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication. J. Phys. Chem. C, 2008, 112(24): 8773-8778. |
[26] | Yin Y D, Rioux R M, Alivisatos A P, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Sci. Mag., 2004, 304(5671): 711-716. |
[27] | Ramesh T N. Investigation on the oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide. Ind. Eng. Chem. Res., 2010, 49(4): 1530-1533. |
[28] | Fan H J, Knez M, Roland S, et al. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano. Lett., 2007, 7(4): 993-997. |
[29] | Zhang G Q, Wang W, Yu Q X, et al. Facile one-pot synthesis of PbSe and NiSe2 hollow spheres: Kirkendall-effect-induced growth and related properties. Chem. Mater., 2009, 21(5): 969-974. |
[30] | An K J, Kwon S G, Hyeon T. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano. Lett., 2008, 8(12): 4252-4258. |
[31] | Park J W, Zheng H M, Alivisatos A P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc., 2009, 131(39): 13943-13945. |
[32] | Moshe A B, Markovich G. Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. J. Am. Chem. Soc., 2011, 23(5): 1239-1245. |
[33] | Wang J X, Ma C, Choi Y M. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J. Am. Chem. Soc., 2011, 133(34): 13551-13557. |
[34] | Song X F, Gao L, Mathur S. Synthesis, characterization, gas sensing properties of porous nickel oxide nanotubes. J. Phys. Chem. C, 2011, 115(44): 21730-21735. |
[35] | Liu J, Chen X L, Wang W J, et al. Large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. Mater. Lett., 2009, 63(26): 2221-2223. |
[36] | Zhu H T, Wang J X, Wu D X. Fast synthesis, formation mechanism and control of shell thickness of CuS hollow spheres. Inorg. Chem., 2009, 48(15): 7099-7104. |
[37] | Wang J W, Johnston-Peck A C, Tracy J B. Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater., 2009, 21(19): 4462-4467. |
[38] | Peng Q, Sun X Y, Spagnola J C, et al. Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano, 2009, 3(3): 546-554. |
[39] | Liang X, Wang X, Zhuang Y, et a1. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendal1 effect. J. Am. Chem. Soc., 2008, 130(9): 2736-2737. |
[40] | Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater., 2006, 5(8): 627-631. |
[41] | Jiao S H, Jiang K, Xu D S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater., 2006, 18(9): 1174-1177. |
[42] | Chen H M, Lee J F. Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C, 2008, 112(20): 7522-7526. |
[43] | Sun Y G, Mayers B T, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano. Lett., 2002, 2(5): 481-485. |
[44] | Kim M H, Lu X M, Xia Y, et al. Morphological evolution of single-crystal Ag nanospheres during the Galvanic replacement reaction with HAuCl4. J. Phys. Chem. C, 2008, 112(21): 7872-7876. |
[45] | You L, Mao Y W, Ge J P. Synthesis of stable SiO2@Au-nanoring colloids as recyclable catalysts: galvanic replacement taking place on the surface. J. Phys. Chem. C, 2012, 116(19): 10753-10759. |
[46] | Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B, 2005, 109(16): 7795-7800. |
[47] | Guo S J, Fang Y X, Dong S J. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C, 111(45): 17104-17109. |
[48] | Mohl M, Dobo D, Kukovecz A, et al. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C, 2011, 115(19): 9403-9409. |
[49] | Teng X W, Wang Q, Liu P, et al. Formation of Pd/Au nanostructures from Pd nanowires via Galvanic replacement reaction. J. Am. Chem. Soc., 2008, 130(3): 1093-1101. |
[50] | Seo D, Song H. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J. Am. Chem. Soc., 2009, 131(51): 18210-18211. |
[51] | Papadimitriou S, Armyanov S, Valova E, et al. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process. J. Phys. Chem. C, 2010, 114(11): 5217-5223. |
[52] | Vongsavat V, Vittur B M, Lee T R, et al. Ultrasmall hollow gold silver nanoshells with extinctions strongly red-shifted to the near- infrared. ACS. Appl. Mater. Interfaces, 2011, 3(9): 3616-3624. |
[53] | Cobley C M, Xia Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R, 2010, 3-6(70): 44-62. |
[54] | Zhang Q, Zhang T R, Yin Y D. Permeable silica shell through surface-protected etching. Nano Lett., 2008, 8(9): 2867-2871. |
[55] | Zhang H N, Zhou Y, Akins D L. Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. J. Colloid. Interface. Sci., 2012, 375(1): 106-111. |
[56] | Chen B D, Li L L, Tang F Q. Facile and scalable synthesis of tailored silica ‘‘Nanorattle’’ structures. Chem. Mater., 2009, 21(37): 3804-3807. |
[57] | Kim D Y, Park J, Hyeon T, et al. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc., 2007, 129(18): 5812-5813. |
[58] | Wang Z Y, Luan D Y, Li C M, et al. Engineering nonspherical hollow structures with complex interiors by template- engaged redox etching. J. Am. Chem. Soc., 2010, 132(45): 16271-16277. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||