[1] Tliha M, Mathlouthi H, Khaldi C, et al. Electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 hydrogen storage alloy. Journal of Power Sources, 2006, 160(2): 1391–1394. [2] WEI Xue-Dong, DONG Hui, LIU Yong-Ning, et al. The effect of partial substitution of Si for Ni on the electrochemical properties of cobalt-free LaNi4.2?xAl0.35Mn0.45Six (x = 0–0.35) alloys. Journal of Alloys and Compounds, 2009, 481(1/2): 687–691.[3] Li S L, Wang P, Chen W, et al. Hydrogen storage properties of LaNi3.8Al1.0M0.2 (M?=?Ni, Cu, Fe, Al, Cr, Mn) alloys. Journal of Alloys and Compounds, 2009, 485(1/2): 867–871.[4] TIAN Xiao, LIU Xiang-Dong, XU Jin, et al. Microstructures and electrochemical characteristics of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys prepared by mechanical alloying.?International Journal of Hydrogen Energy, 2009, 34(5): 2295–2302.[5] ZHAO Xian-Yu, DING Yi, YANG Meng, et al. Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy, 2008, 33(1): 81–86.[6] Li S L, Wang P, Chen W, et al. Effect of non-stoichiometry on hydrogen storage properties of La(Ni3.8Al1.0Mn0.2)x alloys. International Journal of Hydrogen Energy, 2010, 35(8): 3537–3545.[7] ZHANG Wen-Cui, HAN Shu-Min, HAO Jian-Sheng, et al. Study on kinetics and electrochemical properties of low-Co AB5-type alloys for high-power Ni/MH battery. Electrochimica Acta, 2009, 54(4): 1383–1387.[8] WANG Yan-Zhi, ZHAO Min-Shou, LI Shu-Cun. Recent progress in study of composite hydrogen storage alloy as negative electrode material in Ni/MH battery. Rare Metal Materials and Engineering, 2008, 37(2): 195–199.[9] LIU Su-Qin, CHEN Dong-Yang, HUANG Ke-Long, et al. Preparation and electrochemical characteristics of MgNi-TiNi0.56M0.44 (M=Al, Fe) alloys. Journal of Inorganic Materials, 2009, 24(2): 361–366.[10] LIU Xiang-Dong, HUANG Li-Hong, TIAN Xiao, et al. Activation characteristics and microstructure of Mg2Ni/ Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 composite hydrogen storage alloys prepared by two-step re-melting. International Journal of Hydrogen Energy, 2007, 32(18): 4939–4942.[11] WANG Yan-Zhi, ZHAO Min-Shou. Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-LaNi4Al0.4Mn0.3Co0.3 composite hydrogen storage alloy. International Journal of Hydrogen Energy, 2010, 35(15): 8268–8274.[12] Lü Dong-Sheng, LI Wei-Shan, TANG Ren-Heng, et al. Crystallite size and electrochemical performance of metal hydrides based on LaNi5 prepared by twin-roll process. Journal of Inorganic Materials, 2005, 20(4): 859?863.[13] Lin H J, Ouyang L Z, Wang H, et al. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy. International Journal of Hydrogen Energy, 2012, 37(1): 1145?1150.[14] TIAN Xiao, LIU Xiang-Dong, YAO Zhao-Quan, et al. Microstructures and electrochemical properties of AB5-type rare earth hydrogen storage alloys prepared by rapid quenching. Journal of Inner Mongolia University (Natural Science Edition), 2011, 42(6): 671?676.[15] TIAN Xiao, LIU Xiang-Dong, MA Fan, et al. Effects of compaction pressure on the electrochemical properties of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 metal hydride electrodes. Journal of Alloys and Compounds, 2011, 509(5): 1734–1738.[16] 崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 2004: 83–87.[17] ZHANG Zhong, HAN Shu-Min, LI Yuan, et al. Electrochemical properties of Ml1?xMgxNi3.0Mn0.10Co0.55Al0.10 (x?=?0.05–0.30) hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 431(1/2): 208?211.[18] PAN Hong-Ge, LIU Yong-Feng, GAO Ming-Xia, et al. A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x = 2.5–5.0) hydrogen storage alloys. Journal of the Electrochemical Society, 2003, 150(5): A565–A570.[19] XIAO Xue-Zhang, WANG Xin-Hua, CHEN Li-Xin, et al. Microstructure and hydrogen storage properties of La1.8Ca0.2Mg14Ni3 + x% Ti composites. Rare Metal Materials and Engineering, 2007, 36(5): 790–793.[20] LI Yang, Cheng Yang-Tse. Amorphous La-Ni thin film electrodes. Journal of Alloys and Compounds, 1995, 223(1): 6–12.[21] Züttel A, Meli F, Schlapbach L. AB2 and AB5 metal hydride electrodes: a phenomenological model for the cycle life. Journal of Alloys and Compounds, 1993, 200(1/2): 157–163.[22] ZHANG Yang-Huan, LI Bao-Wei, REN Hui-Ping, et al. Cycle stabilities of the La0.7Mg0.3Ni2.55?xCo0.45Mx (M?=?Fe, Mn, Al; x?=?0, 0.1) electrode alloys prepared by casting and rapid quenching. Journal of Alloys and Compounds, 2008, 458(1/2): 340–345.[23] ZHANG Yang-Huan, WANG Guo-Qing, DONG Xiao-Ping, et al. Effect of substituting Co with Fe on the cycle stabilities of the as-cast and quenched AB5-type hydrogen storage alloys. Journal of Power Sources, 2005, 148: 105–111.?[24] 李 锐. 钛钒基贮氢电极合金结构、性能及其衰退机理研究. 杭州: 浙江大学博士论文, 2007.[25] ZHANG Yang-Huan, DONG Xiao-Ping, GUO Shi-Hai, et al. The cycle stabilities of the as-cast and quenched La2Mg(Ni0.85Co0.15)9Mx (M?=?B, Cr, Ti; x?=?0, 0.1) hydrogen storage alloys. Journal of Alloys and Compounds, 2005, 398(1/2): 178–183.[26] Iwakura C, Oura T, Inoue H, et al. Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB5-type hydrogen storage alloys. Electrochimica Acta, 1996, 41(1): 117–121. |