无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 683-690.DOI: 10.15541/jim20210652
徐谱昊(), 张相召, 刘桂武(), 张明芬, 桂新易, 乔冠军()
收稿日期:
2021-10-22
修回日期:
2022-01-19
出版日期:
2022-06-20
网络出版日期:
2022-01-24
通讯作者:
刘桂武, 教授. E-mail: gwliu76@ujs.edu.cn;作者简介:
徐谱昊(1993-), 男, 博士研究生. E-mail: 13667004282@163.com
XU Puhao(), ZHANG Xiangzhao, LIU Guiwu(), ZHANG Mingfen, GUI Xinyi, QIAO Guanjun()
Received:
2021-10-22
Revised:
2022-01-19
Published:
2022-06-20
Online:
2022-01-24
Contact:
LIU Guiwu, professor. E-mail: gwliu76@ujs.edu.cn;About author:
XU Puhao (1993–), male, PhD candidate. E-mail: 13667004282@163.com
Supported by:
摘要:
SiC陶瓷具有优异的综合性能, 通过钎焊获得高强度接头是其获得广泛应用的重要前提。研究采用Al-(10, 20, 30, 40)Ti(Ti的名义原子含量10%、20%、30%、40%)系列合金, 在1550 ℃条件下, 对SiC陶瓷进行钎焊30 min。当中间层厚度为~50 μm时, SiC钎焊接头的平均剪切强度处于100~260 MPa范围内。当采用Al-20Ti合金作为钎料时, 随着中间层厚度从~100 μm减小至25 μm, 钎焊接头的平均强度逐渐提高, 且最大强度~315 MPa。同时, 钎焊中间层中(Al)相逐渐减少直至消失, 只留下Al4C3、TiC和(Al,Si)3Ti相。SiC/Al-20Ti/SiC钎焊接头的断裂主要发生在靠近中间层/陶瓷界面位置的陶瓷基体内。
中图分类号:
徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690.
XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal[J]. Journal of Inorganic Materials, 2022, 37(6): 683-690.
Fig. 1 BSE images of four nominal Al-Ti alloys (a) Al-10Ti; (b) Al-20Ti; (c) Al-30Ti; (d) Al-40Ti. The black dots are the diamond particles introduced during the polishing
Fig. 3 Cross-sectional BSE images of SiC/SiC joints brazed using the four nominal Al-Ti alloys (a-h) and corresponding EDS elemental mapping (i) (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti; (g, h) Al-40Ti
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Table 1 EDS results of partial phases in joint interlayers (atom percent)
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Fig. 4 Cross-sectional BSE images of SiC/Al-20Ti/SiC joints brazed with interlayers of different thickness (a) ~25 μm; (b) 50 μm; (c) 70 μm; (d) 100 μm
Fig. 5 Interfacial (a) TEM and (b?f) HRTEM images of SiC/Al-20Ti/SiC joint sample with interlayer thickness of ~25 μm and the corresponding (g?i) SAED patterns
Fig. 7 Typical fracture surface morphologies of SiC/SiC joints brazed using different nominal Al-Ti alloys (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti ; (g, h) Al-40Ti
[1] |
LIU G W, ZHANG X Z, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior. Journal of Advanced Ceramics, 2019, 8(1): 19-38.
DOI URL |
[2] |
ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces. Journal of Inorganic Materials, 2016, 31(1): 58-62.
DOI URL |
[3] |
FERNIE J, DREW R, KNOWLES K. Joining of engineering ceramics. International Materials Reviews, 2009, 54: 283-331.
DOI URL |
[4] |
YOON D H, REIMANIS I E. A review on the joining of SiC for high-temperature applications. Journal of the Korean Ceramic Society, 2020, 57(5): 246-270.
DOI URL |
[5] |
VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2. Journal of the European Ceramic Society, 2018, 38(11): 3727-3734.
DOI URL |
[6] |
LIU Y, HUANG Z R, LIU X J. Joining of sintered silicon carbide using ternary Ag-Cu-Ti active brazing alloy. Ceramics International, 2009, 35(8): 3479-3484.
DOI URL |
[7] |
XIONG H P, WEI M, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly- developed Co-based brazing alloy. Journal of Materials Research, 2007, 22(10): 2727-2736.
DOI URL |
[8] |
KOLTSOV A, HODAJ F, EUSTATHOPOULOS N. Brazing of AlN to SiC by Pr silicides: physicochemichal aspects. Materials Science and Engineering: A, 2008, 495(1/2): 259-264.
DOI URL |
[9] | RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys. International Journal of Materials & Product Technology, 2004, 20(5): 440-451. |
[10] |
ZHAO S T, ZHAGN X Z, LIU G W, et al. Surface metallization of SiC ceramic by Mo-Ni-Si coatings for improving its wettability by molten Ag. Rare Metal Materials and Engineering, 2018, 47(3): 759-765.
DOI URL |
[11] |
LIU G W, MUOLO M L, VALENZA F, et al. Survey on wetting of SiC by molten metals. Ceramics International, 2010, 36(4): 1177-1188.
DOI URL |
[12] | ZHAO H T, HUANG J H, ZHANG H, et al. Vacuum brazing of Si/SiC ceramic and low expansion titanium alloy by using Cu-Ti fillers. Rare Metal Materials and Engineering, 2007, 36(12): 2184-2188. |
[13] |
LI J K, LIU L, LIU X. Joining of SiC ceramic by 22Ti-78Si high- temperature rutectic brazing alloy. Journal of Inorganic Materials, 2011, 26(12): 1314-1318.
DOI URL |
[14] |
FU W, SONG X G, TIAN R C, et al. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties. Journal of Materials Science and Technology, 2020, 40: 15-23.
DOI URL |
[15] | XU P H, GUI X Y, ZHANG X Z, et al. Wetting and interfacial behavior of Al-Ti/4H-SiC system: A combined study of experiment and DFT simulation. Ceramics International, 2021, 47: 69-77. |
[16] |
HAO Z T, WANG D P, YANG Z W, et al. Microstructural evolution and mechanical properties of FeNi42alloy and SiC ceramic joint vacuum brazed with Ag-based filler metals. Ceramics International, 2020, 46(8): 12795-12805.
DOI URL |
[17] |
PRAKASH P, MOHANDAS T, RAJU P D. Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints. Scripta Materialia, 2005, 52(11): 1169-1173.
DOI URL |
[18] |
TIAN W B, SUN Z M, ZHANG P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures. Journal of the Australian Ceramic Society, 2017, 53(2): 511-516.
DOI URL |
[19] |
SUDMEYER I, HETTESHEIMER T, ROHDE M. On the shear strength of laser brazed SiC-steel joints: effects of braze metal fillers and surface patterning. Ceramics International, 2010, 36(3): 1083-1090.
DOI URL |
[20] |
CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal. International Journal of Applied Ceramic Technology, 2020, 17(6): 2591-2597.
DOI URL |
[21] |
LIU Y, ZHU Y Z, YANG Y, et al. Microstructure of reaction layer and its effect on the joining strength of SiC/SiC joints brazed using Ag-Cu-In-Ti alloy. Journal of Advanced Ceramics, 2014, 3(1): 71-75.
DOI URL |
[22] |
MOSZNER F, MATA-OSORO G, CHIODI M, et al. Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures. International Journal of Applied Ceramic Technology, 2017, 14(4): 703-711.
DOI URL |
[23] |
HE H M, LU C Y, HE H M, et al. Characterization of SiC ceramic joints brazed using Au-Ni-Pd-Ti high-temperature filler alloy. Materials, 2019, 12(6): 931.
DOI URL |
[24] | QIN Q, ZHANG J, LU CJ, et al. Microstructure and mechanical properties of the SiC/Zr4 joints brazed with TiZrNiCu filler for nuclear application. Progress in Natural Science-Materials International, 2018, 28(3): 124-131. |
[25] |
XIONG H P, WEI M, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal. Materials Letters, 2007, 61(25): 4662-4665.
DOI URL |
[26] |
SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler. Journal of the American Ceramic Society, 2019, 103(2): 912-920.
DOI URL |
[27] |
CHEN Z B, BIAN H, NIU C N, et al. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Materials Characterization, 2018, 142: 219-222.
DOI URL |
[28] |
DAI X Y, CAO J, CHEN Z, et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler. Ceramics International, 2016, 42(5): 6319-6328.
DOI URL |
[29] |
LIU Y, QI Q, ZHU Y, et al. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag-Cu-Ti hybrid tapes. Journal of Adhesion Science and Technology, 2015, 29(15): 1563-1571.
DOI URL |
[30] |
LI Z, WEI R W, WEN Q, et al. Microstructure and mechanical properties of SiC ceramic joints vacuum brazed with in-situ formed SiC particulate reinforced Si-24Ti alloy. Vacuum, 2019, 173: 109160.
DOI URL |
[31] |
ZHONG Z H, HOU G X, ZHU Z X, et al. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag-Cu-Ti brazing alloy. Ceramics International, 2018, 44(10): 11862-11868.
DOI URL |
[32] |
SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic. Journal of the European Ceramic Society, 2019, 39(4): 696-704.
DOI URL |
[33] |
ZHOU X B, LI Y B, LI Y F, et al. Residual thermal stress of SiC/Ti3SiC2/SiC joints calculation and relaxed by post-annealing. International Journal of Applied Ceramic Technology, 2018, 15: 1157-1165.
DOI URL |
[34] |
ZHOU X B, HAN Y H, SHEN X F, et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 2015, 466: 322-327.
DOI URL |
[35] |
YANG D X, ZHOU Y, YAN X H, et al. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process. Journal of Advanced Ceramics, 2020, 9(1): 83-93.
DOI URL |
[36] |
ZHANG X Z, LIU G W, TAO J N, et al. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: microstructures and joint mechanical behavior. Journal of Materials Science and Technology, 2018, 34(7): 1180-1188.
DOI URL |
[37] |
ZHOU X B, JING L, KWON Y D, et al. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. Journal of Advanced Ceramics, 2020, 9(4): 462-470.
DOI URL |
[1] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[2] | 张硕, 付前刚, 张佩, 费杰, 李伟. C/C多孔体的高温热处理对C/C-SiC复合材料摩擦磨损行为的影响[J]. 无机材料学报, 2023, 38(5): 561-568. |
[3] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[4] | 吴爽, 苟燕子, 王永寿, 宋曲之, 张庆雨, 王应德. 高温热处理对国产KD-SA型SiC纤维组成结构与力学性能的影响[J]. 无机材料学报, 2023, 38(5): 569-576. |
[5] | 穆宏赫, 王鹏飞, 施宇峰, 张中晗, 武安华, 苏良碧. 热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化[J]. 无机材料学报, 2023, 38(3): 288-295. |
[6] | 孙晗, 李文俊, 贾子璇, 张岩, 殷利迎, 介万奇, 徐亚东. ACRT技术对大尺寸ZnTe晶体溶液法制备及其性能影响[J]. 无机材料学报, 2023, 38(3): 310-315. |
[7] | 荆开开, 管皞阳, 朱思雨, 张超, 刘永胜, 王波, 王晶, 李玫, 张程煜. Cansas-II SiCf/SiC复合材料的高温拉伸蠕变行为[J]. 无机材料学报, 2023, 38(2): 177-183. |
[8] | 华思恒, 杨东旺, 唐昊, 袁雄, 展若雨, 徐卓明, 吕嘉南, 肖娅妮, 鄢永高, 唐新峰. n型Bi2Te3基材料表面处理对热电单元性能的影响[J]. 无机材料学报, 2023, 38(2): 163-169. |
[9] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[10] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[11] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[12] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
[13] | 夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642. |
[14] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[15] | 阮景, 杨金山, 闫静怡, 游潇, 王萌萌, 胡建宝, 张翔宇, 丁玉生, 董绍明. 三维碳化硅纳米线增强碳化硅陶瓷基复合材料的电磁屏蔽性能[J]. 无机材料学报, 2022, 37(5): 579-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||