无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 683-690.DOI: 10.15541/jim20210652 CSTR: 32189.14.10.15541/jim20210652
徐谱昊(), 张相召, 刘桂武(), 张明芬, 桂新易, 乔冠军()
收稿日期:
2021-10-22
修回日期:
2022-01-19
出版日期:
2022-06-20
网络出版日期:
2022-01-24
通讯作者:
刘桂武, 教授. E-mail: gwliu76@ujs.edu.cn;作者简介:
徐谱昊(1993-), 男, 博士研究生. E-mail: 13667004282@163.com
XU Puhao(), ZHANG Xiangzhao, LIU Guiwu(), ZHANG Mingfen, GUI Xinyi, QIAO Guanjun()
Received:
2021-10-22
Revised:
2022-01-19
Published:
2022-06-20
Online:
2022-01-24
Contact:
LIU Guiwu, professor. E-mail: gwliu76@ujs.edu.cn;About author:
XU Puhao (1993–), male, PhD candidate. E-mail: 13667004282@163.com
Supported by:
摘要:
SiC陶瓷具有优异的综合性能, 通过钎焊获得高强度接头是其获得广泛应用的重要前提。研究采用Al-(10, 20, 30, 40)Ti(Ti的名义原子含量10%、20%、30%、40%)系列合金, 在1550 ℃条件下, 对SiC陶瓷进行钎焊30 min。当中间层厚度为~50 μm时, SiC钎焊接头的平均剪切强度处于100~260 MPa范围内。当采用Al-20Ti合金作为钎料时, 随着中间层厚度从~100 μm减小至25 μm, 钎焊接头的平均强度逐渐提高, 且最大强度~315 MPa。同时, 钎焊中间层中(Al)相逐渐减少直至消失, 只留下Al4C3、TiC和(Al,Si)3Ti相。SiC/Al-20Ti/SiC钎焊接头的断裂主要发生在靠近中间层/陶瓷界面位置的陶瓷基体内。
中图分类号:
徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690.
XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal[J]. Journal of Inorganic Materials, 2022, 37(6): 683-690.
Fig. 1 BSE images of four nominal Al-Ti alloys (a) Al-10Ti; (b) Al-20Ti; (c) Al-30Ti; (d) Al-40Ti. The black dots are the diamond particles introduced during the polishing
Fig. 3 Cross-sectional BSE images of SiC/SiC joints brazed using the four nominal Al-Ti alloys (a-h) and corresponding EDS elemental mapping (i) (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti; (g, h) Al-40Ti
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Table 1 EDS results of partial phases in joint interlayers (atom percent)
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Fig. 4 Cross-sectional BSE images of SiC/Al-20Ti/SiC joints brazed with interlayers of different thickness (a) ~25 μm; (b) 50 μm; (c) 70 μm; (d) 100 μm
Fig. 5 Interfacial (a) TEM and (b?f) HRTEM images of SiC/Al-20Ti/SiC joint sample with interlayer thickness of ~25 μm and the corresponding (g?i) SAED patterns
Fig. 7 Typical fracture surface morphologies of SiC/SiC joints brazed using different nominal Al-Ti alloys (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti ; (g, h) Al-40Ti
[1] |
LIU G W, ZHANG X Z, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior. Journal of Advanced Ceramics, 2019, 8(1): 19-38.
DOI URL |
[2] |
ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces. Journal of Inorganic Materials, 2016, 31(1): 58-62.
DOI URL |
[3] |
FERNIE J, DREW R, KNOWLES K. Joining of engineering ceramics. International Materials Reviews, 2009, 54: 283-331.
DOI URL |
[4] |
YOON D H, REIMANIS I E. A review on the joining of SiC for high-temperature applications. Journal of the Korean Ceramic Society, 2020, 57(5): 246-270.
DOI URL |
[5] |
VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2. Journal of the European Ceramic Society, 2018, 38(11): 3727-3734.
DOI URL |
[6] |
LIU Y, HUANG Z R, LIU X J. Joining of sintered silicon carbide using ternary Ag-Cu-Ti active brazing alloy. Ceramics International, 2009, 35(8): 3479-3484.
DOI URL |
[7] |
XIONG H P, WEI M, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly- developed Co-based brazing alloy. Journal of Materials Research, 2007, 22(10): 2727-2736.
DOI URL |
[8] |
KOLTSOV A, HODAJ F, EUSTATHOPOULOS N. Brazing of AlN to SiC by Pr silicides: physicochemichal aspects. Materials Science and Engineering: A, 2008, 495(1/2): 259-264.
DOI URL |
[9] | RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys. International Journal of Materials & Product Technology, 2004, 20(5): 440-451. |
[10] |
ZHAO S T, ZHAGN X Z, LIU G W, et al. Surface metallization of SiC ceramic by Mo-Ni-Si coatings for improving its wettability by molten Ag. Rare Metal Materials and Engineering, 2018, 47(3): 759-765.
DOI URL |
[11] |
LIU G W, MUOLO M L, VALENZA F, et al. Survey on wetting of SiC by molten metals. Ceramics International, 2010, 36(4): 1177-1188.
DOI URL |
[12] | ZHAO H T, HUANG J H, ZHANG H, et al. Vacuum brazing of Si/SiC ceramic and low expansion titanium alloy by using Cu-Ti fillers. Rare Metal Materials and Engineering, 2007, 36(12): 2184-2188. |
[13] |
LI J K, LIU L, LIU X. Joining of SiC ceramic by 22Ti-78Si high- temperature rutectic brazing alloy. Journal of Inorganic Materials, 2011, 26(12): 1314-1318.
DOI URL |
[14] |
FU W, SONG X G, TIAN R C, et al. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties. Journal of Materials Science and Technology, 2020, 40: 15-23.
DOI URL |
[15] | XU P H, GUI X Y, ZHANG X Z, et al. Wetting and interfacial behavior of Al-Ti/4H-SiC system: A combined study of experiment and DFT simulation. Ceramics International, 2021, 47: 69-77. |
[16] |
HAO Z T, WANG D P, YANG Z W, et al. Microstructural evolution and mechanical properties of FeNi42alloy and SiC ceramic joint vacuum brazed with Ag-based filler metals. Ceramics International, 2020, 46(8): 12795-12805.
DOI URL |
[17] |
PRAKASH P, MOHANDAS T, RAJU P D. Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints. Scripta Materialia, 2005, 52(11): 1169-1173.
DOI URL |
[18] |
TIAN W B, SUN Z M, ZHANG P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures. Journal of the Australian Ceramic Society, 2017, 53(2): 511-516.
DOI URL |
[19] |
SUDMEYER I, HETTESHEIMER T, ROHDE M. On the shear strength of laser brazed SiC-steel joints: effects of braze metal fillers and surface patterning. Ceramics International, 2010, 36(3): 1083-1090.
DOI URL |
[20] |
CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal. International Journal of Applied Ceramic Technology, 2020, 17(6): 2591-2597.
DOI URL |
[21] |
LIU Y, ZHU Y Z, YANG Y, et al. Microstructure of reaction layer and its effect on the joining strength of SiC/SiC joints brazed using Ag-Cu-In-Ti alloy. Journal of Advanced Ceramics, 2014, 3(1): 71-75.
DOI URL |
[22] |
MOSZNER F, MATA-OSORO G, CHIODI M, et al. Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures. International Journal of Applied Ceramic Technology, 2017, 14(4): 703-711.
DOI URL |
[23] |
HE H M, LU C Y, HE H M, et al. Characterization of SiC ceramic joints brazed using Au-Ni-Pd-Ti high-temperature filler alloy. Materials, 2019, 12(6): 931.
DOI URL |
[24] | QIN Q, ZHANG J, LU CJ, et al. Microstructure and mechanical properties of the SiC/Zr4 joints brazed with TiZrNiCu filler for nuclear application. Progress in Natural Science-Materials International, 2018, 28(3): 124-131. |
[25] |
XIONG H P, WEI M, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal. Materials Letters, 2007, 61(25): 4662-4665.
DOI URL |
[26] |
SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler. Journal of the American Ceramic Society, 2019, 103(2): 912-920.
DOI URL |
[27] |
CHEN Z B, BIAN H, NIU C N, et al. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Materials Characterization, 2018, 142: 219-222.
DOI URL |
[28] |
DAI X Y, CAO J, CHEN Z, et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler. Ceramics International, 2016, 42(5): 6319-6328.
DOI URL |
[29] |
LIU Y, QI Q, ZHU Y, et al. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag-Cu-Ti hybrid tapes. Journal of Adhesion Science and Technology, 2015, 29(15): 1563-1571.
DOI URL |
[30] |
LI Z, WEI R W, WEN Q, et al. Microstructure and mechanical properties of SiC ceramic joints vacuum brazed with in-situ formed SiC particulate reinforced Si-24Ti alloy. Vacuum, 2019, 173: 109160.
DOI URL |
[31] |
ZHONG Z H, HOU G X, ZHU Z X, et al. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag-Cu-Ti brazing alloy. Ceramics International, 2018, 44(10): 11862-11868.
DOI URL |
[32] |
SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic. Journal of the European Ceramic Society, 2019, 39(4): 696-704.
DOI URL |
[33] |
ZHOU X B, LI Y B, LI Y F, et al. Residual thermal stress of SiC/Ti3SiC2/SiC joints calculation and relaxed by post-annealing. International Journal of Applied Ceramic Technology, 2018, 15: 1157-1165.
DOI URL |
[34] |
ZHOU X B, HAN Y H, SHEN X F, et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 2015, 466: 322-327.
DOI URL |
[35] |
YANG D X, ZHOU Y, YAN X H, et al. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process. Journal of Advanced Ceramics, 2020, 9(1): 83-93.
DOI URL |
[36] |
ZHANG X Z, LIU G W, TAO J N, et al. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: microstructures and joint mechanical behavior. Journal of Materials Science and Technology, 2018, 34(7): 1180-1188.
DOI URL |
[37] |
ZHOU X B, JING L, KWON Y D, et al. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. Journal of Advanced Ceramics, 2020, 9(4): 462-470.
DOI URL |
[1] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[2] | 谭敏, 陈小武, 杨金山, 张翔宇, 阚艳梅, 周海军, 薛玉冬, 董绍明. 流延成型结合反应熔渗制备ZrB2-SiC陶瓷及其微观结构与氧化行为研究[J]. 无机材料学报, 2024, 39(8): 955-964. |
[3] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[4] | 姜灵毅, 庞生洋, 杨超, 张悦, 胡成龙, 汤素芳. C/SiC-BN复合材料的制备及氧化行为[J]. 无机材料学报, 2024, 39(7): 779-786. |
[5] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[6] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[11] | 郑斌, 康凯, 张青, 叶昉, 解静, 贾研, 孙国栋, 成来飞. 前驱体转化陶瓷法制备Ti3SiC2陶瓷及其热稳定性研究[J]. 无机材料学报, 2024, 39(6): 733-740. |
[12] | 何宗倍, 陈放, 刘佃光, 李统业, 曾强. 模拟核芯FCM燃料的振荡烧结行为研究[J]. 无机材料学报, 2024, 39(5): 501-508. |
[13] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[14] | 管皞阳, 张立, 荆开开, 师维刚, 王晶, 李玫, 刘永胜, 张程煜. 国产三代2.5D SiCf/SiC复合材料的界面力学性能[J]. 无机材料学报, 2024, 39(3): 259-266. |
[15] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||