无机材料学报 ›› 2012, Vol. 27 ›› Issue (1): 11-18.DOI: 10.3724/SP.J.1077.2012.00011 CSTR: 32189.14.SP.J.1077.2012.00011
王文中, 尚 萌, 尹文宗, 任 佳, 周 林
收稿日期:
2011-08-26
修回日期:
2011-09-30
出版日期:
2012-01-09
网络出版日期:
2011-12-19
作者简介:
王文中, 男, 博士, 中国科学院上海硅酸盐研究所研究员, 中科院“百人计划”. 主要从事以铋基复合氧化物为主的可见光催化材料的设计、合成、光催化机理及其在环境净化方面的应用等研究工作. 在Angew. Chem. Int. Ed.等SCI期刊上发表论文90篇, 被引用2200余次, h因子26, 申请发明专利10余项. 曾获2007、2008、2009、2011年上海硅酸盐研究所优秀研究生指导教师, 2009年中科院朱李月华优秀教师, 2009年中科院优秀研究生指导教师, 2010年中国科学院上海分院第二届杰出青年科技创新人才.
基金资助:
WANG Wen-Zhong, SHANG Meng, YIN Wen-Zong, REN Jia, ZHOU Lin
Received:
2011-08-26
Revised:
2011-09-30
Published:
2012-01-09
Online:
2011-12-19
Supported by:
摘要:
光催化材料因可以利用太阳能净化环境, 受到广泛关注. 一些含铋复合氧化物半导体可直接被可见光激发, 更有效地利用太阳能, 实现有机污染物的矿化, 成为近期光催化材料研究领域的热点之一. 本文概述了Bi2WO6、BiVO4和Bi2MoO6三种常见的含铋复合氧化物可见光催化材料体系的近期研究进展. 通过合成方法的优选、晶粒成核和生长的调节, 实现晶粒尺寸、形貌、结晶度等微结构的控制, 从而获得小尺寸、高表面积的光催化材料, 无论是在有机染料、苯酚和乙醛等多种模拟污染物的矿化, 还是抗菌等方面, 它们皆呈现出优秀的可见光催化性能. 通过进一步发展, 含铋复合氧化物有望实现在环境净化领域的应用.
中图分类号:
王文中, 尚 萌, 尹文宗, 任 佳, 周 林. 含铋复合氧化物可见光催化材料研究进展[J]. 无机材料学报, 2012, 27(1): 11-18.
WANG Wen-Zhong, SHANG Meng, YIN Wen-Zong, REN Jia, ZHOU Lin. Recent Progress on the Bismuth Containing Complex Oxide Photocatalysts[J]. Journal of Inorganic Materials, 2012, 27(1): 11-18.
图 3 (A) Bi2WO6的紫外-可见漫反射光谱; (B) RhB水溶液的紫外-可见光降解; (C) 不同Bi2WO6的光催化性能对比(用于对比的钨酸铋分别采用固相法,传统水热法, 柠檬酸铋铵为铋源水热法合成; (D) 可见光下光催化降解RhB的循环稳定性[19]
Fig. 3 (A) UV-Vis diffuse reflectance spectra of the Bi2WO6 nanosheet; (B) Temporal change of UV-Vis spectrum of RhB aqueous solution; (C) Comparison of the photocatalytic activities of different Bi2WO6 and blank test (the Bi2WO6 used for comparison are prepared by solid-state reaction, traditional hydrothermal, and hydrothermal method using Bi(NH3)2C6H7O7 as Bi source, respectively; (D) Cycling runs in the photocatalytic degradation of RhB in the presence of Bi2WO6 nanosheet under visible-light[19]
图4 (A) 碳球的TEM照片; (B) Bi2WO6纳米笼的SEM照片; (C) 光催化材料的活性对比; (D) RhB的紫外-可见吸收光谱随光照时间的变化[26]
Fig. 4 (A) TEM image of carbon spheres; (B) SEM image of Bi2WO6 nanocages; (C) The photo-degradation efficiencies of RhB as a function of irradiation time by different photocatalysts; (D) The temporal evolution of the spectra during the photodegradation of RhB mediated by the Bi2WO6 nanocages under visible light (λ > 420 nm)[26]
图 5 纳米纤维(a)热处理前和(b)热处理后的SEM照片; (c) 可见光下降解乙醛时CO2浓度随光照时间的变化; (d) 降解水中氨氮的性能对比[29]
Fig. 5 SEM images of Bi2WO6 nanofibers before calcination (a) and after calcinations (b); (c) photocatalytic degradation of CH3CHO (1×10-4) under visible-light (λ >420 nm); (d) Comparison of the photocatalytic degradation of NH4+/NH3 by different samples[29]
图6 (A) Bi2WO6光催化抗菌对比实验图片: (a)空白样; (b)仅光照; (c)仅有Bi2WO6; (d) Bi2WO6在光照下2 h; (B) E. coli的存活率: (a) Bi2WO6在无光照时(0.5 mg/mL); (b)光照无催化材料; (c) Bi2WO6(0.5 mg/mL)在可见光下; (C) E. coli经Bi2WO6在光照下处理前后的TEM照片(a)处理前, (b)处理后[34]
Fig. 6 (A) Images of colonies on an agar plates: (a) E. coli suspension before reaction; (b) E. coli suspension containing Bi2WO6 in the dark; (c) E. coli suspension without Bi2WO6 under visible light irradiation; (d) E. coli suspension containing Bi2WO6 under visible light irradiation. (B) Survival ratio of E. coli in aqueous dispersions: (a) Bi2WO6 in the dark; (b) No catalyst; and (c) Bi2WO6 under visible light irradiation. (C) TEM images of E. coli irradiated by visible light with Bi2WO6 (a) E. coli before reaction; (b) E. coli treated for 2 h[34]
图8 超声化学法制备的BiVO4 的SEM照片(A)和XRD图谱(B), 其中超声时间为(a)30 min; (b)60 min和(c)固相反应制备的BiVO4; (C) 紫外-可见漫反射光谱, 插图为能带估算?αhv?-(hv)曲线; (D) 超声、固相反应制备的 BiVO4和P25的可见光降解甲基橙的吸收光谱及活性对比(插图)[44]
Fig. 8 SEM image (A) and XRD patterns (B) of UR-BiVO4 when ultrasonic time was 30 min (a), 60 min (b) and by solid state reaction; (C) UV-Vis diffuse reflectance spectra of UR-BiVO4 and SSR-BiVO4 samples, Inset: plots of ?αhv? versus photon energy (hv); (D) Changes of UV-Vis spectra of UR-BiVO4 suspended MO solution as a function of irradiation time. Inset: MO concentration changes over UR-BiVO4, SSR-BiVO4 and P25[44]
图9 (A) m-BiVO4空心球的TEM照片; (B) 光催化降解RhB的性能比较: m-BiVO4空心球(a)、液相法制备的BiVO4(b)和固相法制备的BiVO4(c)[45]
Fig. 9 (A) TEM of m-BiVO4 hollow spheres; (B) Comparison of the photodegradation of RhB by HS-BVO (a), AM-BVO (b), and SSR-BVO (c) under visible light (λ>420 nm)[45]
图10 (A) Bi2MoO6空心球的SEM照片; (B) 光催化降解苯酚的性能对比: HS-BMO(a), SSR-BMO(b), 光解(c)[51]
Fig. 10 (A) SEM image of Bi2MoO6 hollow spheres; (B) Photocatalytic degradation of phenol over HS-BMO (a), SSR- BMO (b) and photolysis (c) under visible-light (λ>420 nm) [51]
图11 Bi2MoO6在3 W蓝光LED光照下: (A) RhB的光降解; (B) 苯酚溶液的光降解; (C) 光催化抗菌: (b) Bi2MoO6在3W蓝光LED灯光照下6 h; (c) 空白样; (d) 只有Bi2MoO6; (e)只在3 W蓝光LED光照下[52]
Fig. 11 Photodegradation of RhB (A), phenol (B) and disinfection (C), ((b) Bi2MoO6 under the irradiation for 6 h; (c) control; (d) Bi2MoO6 only; (e) 3W blue LED only) by Bi2MoO6 under 3W blue LED[52]
[1] | Stoltzfus M W, Woodward P M, Seshadri R, et al. Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. Inorg. Chem., 2007, 46(10): 3839-3850. |
[2] | Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett., 2004, 33(12): 1534-1539. |
[3] | Ricote J, Pardo L, Castro A, et al. Study of the process of mechanochemical activation to obtain aurivillius oxides with n=1. J. Solid State Chem., 2001, 160(1): 54-61. |
[4] | Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett., 1999, 28(10): 1103-1104. |
[5] | Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett., 2004, 92(1/2): 53-56. |
[6] | Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B, 2005, 109(47): 22432-22439. |
[7] | Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Edit., 2004, 43(34): 4463-4466. |
[8] | 谢立进. 铋系复合氧化物纳米晶光催化材料的制备及表征. 青岛: 中国海洋大学硕士论文, 2006. |
[9] | Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater., 2005, 17(13): 3537-3545. |
[10] | Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol., 2007, 41(17): 6234-6239. |
[11] | Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol., 2008, 42(6): 2085-2091. |
[12] | Tian G H, Chen Y J, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J. Mater. Chem., 2011, 21(3): 887-892. |
[13] | Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal. Today, 2008, 131(1-4): 15-20. |
[14] | Chen Z, Qian L W, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. Crystengcomm., 2010, 12(7): 2100-2106. |
[15] | Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation. Environ. Sci. Technol., 2010, 44(17): 6843-6848. |
[16] | Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small, 2007, 3(9): 1618-1625. |
[17] | Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Phys. Chem. Chem. Phys., 2011, 13(7): 2887-2893. |
[18] | Shang M, Wang W Z, Zhang L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C, 2009, 113(13): 14727-14731. |
[19] | Shang M, Wang W Z, Sun S M, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. J. Phys. Chem. C, 2008, 112(28): 10407-10411. |
[20] | Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem., 2007, 17(24): 2526-2532. |
[21] | Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J. Hazard. Mater., 2010, 177(1/2/3): 1013-1018. |
[22] | Zhao W, Chen C, Li X, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst. J. Phys. Chem. B, 2002, 106(19): 5022-5028. |
[23] | Zhao Y, Xie Y, Zhu X, et al. Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries. Chem. Eur. J., 2008, 14(5): 1601-1606. |
[24] | Butler M A. Photoelectrolysis and physical-properties of semiconducting electrode WO3. J. Appl. Phys., 1977, 48(5): 1914-1920. |
[25] | Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1): 49-68. |
[26] | Shang M, Wang W Z, Xu H L. New Bi2WO6 Nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth & Design, 2009, 9(2): 991-996. |
[27] | Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J. Am. Chem. Soc., 2007, 129(27): 8406-8407. |
[28] | Chen C C, Zhao W, Li J, et al. Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol., 2002, 36(16): 3604-3611. |
[29] | Shang M, Wang W Z, Ren J, et al. A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J. Mater. Chem., 2009, 19(34): 6213-6218. |
[30] | Amano F, Yamakata A, Nogami K, et al. Visible light responsive pristine metal oxide photocatalyst: Enhancement of activity by crystallization under hydrothermal treatment. J. Am. Chem. Soc., 2008, 130(52): 17650-17651. |
[31] | Ohtani B. Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem. Lett., 2008, 37(3): 217-229. |
[32] | Zhu X D, Castleberry S R, Nanny M A, et al. Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environ. Sci. Technol., 2005, 39(10): 3784-3791. |
[33] | Lo S L, Ou H H, Liao C H, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environ. Sci. Technol., 2008, 42(12): 4507-4512. |
[34] | Ren J, Wang W Z, Zhang L, et al. Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light. Catal. Commun., 2009, 10(14): 1940-1943. |
[35] | Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc., 1999, 121(49): 11459-11467. |
[36] | Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater., 2001, 13(12): 4624-4628. |
[37] | Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett., 1998, 53(3/4): 229-230. |
[38] | Kohtani S, Koshiko M, Kudo A. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B, 2003, 46(3): 573-586. |
[39] | Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catal. Commun., 2005, 6(3): 185-189. |
[40] | Kohtani S, Tomohiro M, Tokumura K, et al. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts. Appl. Catal. B-Environ., 2005, 58(3/4): 265-272. |
[41] | Guan M L, Ma D K, Hu S W, et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem., 2011, 50(3): 800-805. |
[42] | Long M C, Cai W M, Cai J, et a1. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B, 2006, 110(41): 20211-20216. |
[43] | Xie B P, Zhang H X, Cai P X, et a1. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere, 2006, 63(6): 956-963. |
[44] | Zhou L, Wang W Z, Liu S W, et al. A sonochemical route to visible- light-driven high-activity BiVO4 photocatalyst. J. Molec. Catal. A-Chem., 2006, 252(1/2): 120-124. |
[45] | Yin W Z, Wang W Z, Shang M, et al. BiVO4 hollow nanospheres: anchoring synthesis, growth mechanism, and their application in photocatalys 8s. Eur. J. Inorg. Chem., 2009, 2009(20/30): 4379-4384. |
[46] | Xie H D, Shen D Z, Wang X Q, et al. Microwave hydrothermal synthesis and visible-light photocatalytic activity of v-Bi2MoO6 nanoplates. Mater. Chem. Phys., 2008, 110(2/3): 332-336. |
[47] | Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B, 2006, 110(36): 17790-17797. |
[48] | Zhang L W, Xu T G, Zhao X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B-Environ., 2010, 98(3/4): 138-146. |
[49] | Belver C, Adan C, Fernandez-Garcia M. Photocatalytic behaviour of Bi2MoO6 polymetalates for rhodamine B degradation. Catal. Today, 2009, 143(3/4): 274-281. |
[50] | Andersson M, Osterlund L, Ljungstrom S, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of micro- emulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B, 2002, 106(41): 10674-10679. |
[51] | Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation. Catal. Commun., 2010, 11(7): 647-650. |
[52] | 任 佳. 新型纳米可见光催化材料的合成及其环境净化性能研究. 中国科学院研究生院博士论文, 2011. |
[54] | 第一作者学术成就介绍:王文中, 男, 博士, 中国科学院上海硅酸盐研究所研究员, 中科院“百人计划”. 主要从事以铋基复合氧化物为主的可见光催化材料的设计、合成、光催化机理及其在环境净化方面的应用等研究工作. 在Angew. Chem. Int. Ed.等SCI期刊上发表论文90篇, 被引用2200余次, h因子26, 申请发明专利10余项. 曾获2007、2008、2009、2011年上海硅酸盐研究所优秀研究生指导教师, 2009年中科院朱李月华优秀教师, 2009年中科院优秀研究生指导教师, 2010年中国科学院上海分院第二届杰出青年科技创新人才. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||