[1] Pailhe N, Wattiaux A, Gaudon M, et al. Impact of structural features on pigment properties of alpha-Fe2O3 hematite. J. Solid State Chem., 2008, 181(10): 2697-2704.[2] Frey N A, Peng S, Cheng K, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009, 38(9): 2532-2542.[3] Mazellier P, Bolte M. Heterogeneous light-induced transformation of 2,6-dimethylphenol in aqueous suspensions containing goethite. J. Photochem. Photobiol. A, 2000, 132(1/2): 129-135.[4] Bandara J, Tennakone K, Kiwi J. Surface mechanism of molecular recognition between aminophenols and iron oxide surfaces. Langmuir, 2001, 17 (13): 3964-3969.[5] Andreozzi R, Caprio V, Marotta R. Iron(III) (hydr)oxide-mediated photooxidation of 2-aminophenol in aqueous solution: a kinetic study. Water Res., 2003, 37(15): 3682-3688.[6] Bandara J, Mielczarski J A, Lopez A, et al. Sensitized degradation of chlorophenols on iron oxides induced by visible light-comparison with titanium oxide. Appl. Catal. B, 2001, 34(4): 321-333.[7] Sun Z Y, Du J H, Chen H S, et al. FTIR study of nano-iron oxyhydroxides' decoloration on the azo dye. Spectrosc. Spect. Anal., 2006, 26(7): 1226-1229.[8] Zhu L P, Xiao H M, Liu X M, et al. Template-free synthesis and characterization of novel 3D urchin-like alpha-Fe2O3 superstructures. J. Mater. Chem., 2006, 16(19): 1794-1797.[9] Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18(18): 2426-2431.[10] Br-hler M, Georgieva R, Buske N, et al. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6 (11): 2505-2509.[11] Hu F X, Neoh K G, Kang E T. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials, 2006, 27(33): 5725-5733.[12] Molday R S, Yen S P S, Rembaum A. Application of magnetic microspheres in labeling and separation of cells. Nature, 1977, 268(5619): 437-438.[13] Hu X L, Yu J C, Gong J M, et al. Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater., 2007, 19(17): 2324-2329.[14] 牛新书, 徐 荭, 徐甲强. 溶胶-凝胶法纳米α-Fe2O3材料的合成、结构及气敏性能. 功能材料, 200l, 32(6): 349-351.[15] Han J S, Bredow T, Davey D E, et al. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens. Actuators B, 2001, 75(1/2): 18-23.[16] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templateing. Science, 1998, 282(5391): 1111-1114.[17] Breen M L, Dinsmore A D, Pink R H, et al. Sonochmically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir, 2001, 17(3): 903-907.[18] Dai Z F, Dahne L, Mohwald H, et al. Novel capsules with high stability and controlled premeability by hierarchic templating. Angew. Chem. Int. Ed., 2002, 41(21): 4019-4022.[19] Huang H Y, Remsen E E, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc., 1999, 121(15): 3805-3806.[20] Makarova O V, Ostafin A E, Miyoshi H, et al. Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B, 1999, 103(43): 9080-9084.[21] Ostafin A E, Siegel M, Wang Q, et al. Fluorescence of cascade blue (TM) inside nano-sized porous shells of silicate. Microporous Mesoporous Mater., 2003, 57(1): 47-55.[22] Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery. J. Phys. Chem. C, 2008, 112(6): 1851-1856.[23] Cao S W, Zhu Y J. Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C, 2008, 112(16): 6253-6257.[24] Cao S W, Zhu Y J. Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. J. Phys. Chem. C, 2008, 112(32): 12149-12156. [25] Cao S W, Zhu Y J, Cheng G F, et al. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J. Phys. Chem. Solids, 2010, 71(12): 1680-1683. [26] Cao S W, Zhu Y J. Iron oxide hollow spheres: microwave– hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Acta Mater., 2009, 57(7): 2154-2165. [27] Tamaura Y, Buduan P V, Katsura T. Studies on the oxidation of iron(II) ion during the formation of Fe3O4 and alpha-FeOOH by air oxidation of Fe(OH)2 suspensions. J. Chem. Soc. Dalton Trans., 1981(9): 1807-1811.[28] Domingo C, Rodríguez-Clemente R, Blesa M A. Nature and reactivity of intermediates in the autoxidation of iron(II) in aqueous acid-media. Solid State Ionics, 1993, 59(3/4): 187-195.[29] Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride beta-Fe2OH3Cl in aqueous solution: the formation of akaganeite vs goethite. Corros. Sci., 1997, 39(3): 539-553.[30] Santos F J, Varanda L C, Ferracin L C, et al. Synthesis and electrochemical behavior of single-crystal magnetite nanoparticles. J. Phys. Chem. C, 2008, 112(14): 5301-5306.[31] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem. Mater., 2006, 18(16): 3808-3812. [32] Li L L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C, 2007, 111(5): 2123-2127.[33] Wu Z C, Yu K, Zhang S D, et al. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C, 2008, 112(30): 11307-11313.[34] Du D J, Cao M H. Ligand-assisted hydrothermal synthesis of hollow Fe2O3 urchin-like microstructures and their magnetic properties. J. Phys. Chem. C, 2008, 112(29): 10754-10758.[35] Liu S H, Xing R M, Lu F, et al. One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J. Phys. Chem. C, 2009, 113(50): 21042-21047.[36] Luo B, Xu S, Ma W F, et al. Fabrication of magnetite hollow porous nanocrystal shells as a drug carrier for paclitaxel. J. Mater. Chem., 2010, 20(34): 7107-7113.[37] Lian S Y, Wang E B, Gao L, et al. Surfactant-assisted solvothermal preparation of submicrometersized hollow hematite particles and their photocatalytic activity. Mater. Res. Bull., 2006, 41(6): 1192-1198.[38] Mao B D, Kang Z H, Wang E B, et al. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. J. Solid State Chem., 2007, 180(2): 489-495.[39] Cheng W, Tang K B, Qi Y X, et. al. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem., 2010, 20(9): 1799-1805.[40] Dong Q, Kumada N, Yonesaki Y, et al. Template-free hydrothermal synthesis of hollow hematite microspheres. J. Mater. Sci., 2010, 45(20): 5685-5691. [41] Qian H S, Lin G F, Zhang Y X, et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology, 2007, 18(35): 355602-1-6.[42] Bang J H, Suslick K S. Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc., 2007, 129(8): 2242-2243. [43] Jagadeesan D, Mansoori U, Mandal P, et al. Hollow spheres to nanocups: tuning the morphology and mag |