无机材料学报

• •    

脉冲激光沉积制备卤化物钙钛矿薄膜研究进展

曹丙强1, 李兴牧1, 魏浩铭2, 单衍苏1   

  1. 1.济南大学 材料科学与工程学院,济南 250002;
    2.曲阜师范大学 物理工程学院,曲阜 273165
  • 收稿日期:2025-11-06 修回日期:2025-12-18
  • 作者简介:曹丙强(1978-), 教授. E-mail: mse_caobq@ujn.edu.cn.
  • 基金资助:
    国家自然科学基金(52572168); 国家重点研发计划(2022YFC3700801); 山东省重点研发计划(2024CXGC010302)

Advances in the Preparation of Halide Perovskite Thin Films by Pulsed Laser Deposition

CAO Bingqiang1, LI Xingmu1, WEI Haoming2, SHAN Yansu1   

  1. 1. School of Materials Science and Engineering, University of Jinan, Jinan 250002, China;
    2. School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
  • Received:2025-11-06 Revised:2025-12-18
  • About author:CAO Bingqiang (1978-), professor. E-mail: mse_caobq@ujn.edu.cn
  • Supported by:
    National Natural Science Foundation of China (52572168); National Key R&D Program of China (2022YFC3700801); Shandong Provincial Key R&D Program (2024CXGC010302)

摘要: 脉冲激光沉积(Pulsed Laser Deposition, PLD)是一种清洁且用途广泛的薄膜制备技术,该方法可精确控制薄膜厚度、结晶取向及实现精确的化学计量比转移,常用于制备各种复杂组分的功能薄膜材料。卤化物钙钛矿材料因其优异的光电特性而备受关注,已在太阳能电池、光电探测器、发光二极管等领域取得巨大进展。然而,传统多晶薄膜的高缺陷密度严重制约了器件性能的进一步提升。本文系统综述了利用PLD技术制备卤化物钙钛矿薄膜的最新研究进展,重点探讨了如何通过外延生长策略克服多晶薄膜的固有缺陷获得高质量薄膜及相关光电器件。文章首先概述了PLD的基本原理及其在钙钛矿多晶薄膜沉积中的工艺调控与器件应用,随后着重聚焦于PLD外延生长单晶钙钛矿薄膜的前沿进展,围绕晶格匹配、应力调控与低缺陷界面构筑等关键科学问题,阐述了在不同衬底上实现高质量钙钛矿薄膜外延生长的策略及应用。最后,分析了PLD在面向钙钛矿半导体薄膜在光电集成、叠层电池及柔性器件等方面面临的挑战与未来发展方向,希望能为相关研究工作者提供一些帮助与指导。

关键词: 脉冲激光沉积, 卤化物钙钛矿薄膜, 外延生长, 光电转换器件

Abstract: Pulsed Laser Deposition (PLD) is a clean and versatile technique for thin film fabrication. This method provides precise control over film thickness and crystalline orientation, while ensuring accurate transfer of chemical stoichiometry. It is commonly used to fabricate various functional thin film materials with complex compositions. Halide perovskite materials have attracted significant attention due to their exceptional optoelectronic properties, leading to remarkable progress in applications such as solar cells, photodetectors, and light-emitting diodes. However, the high defect density in conventional polycrystalline perovskite films severely limits further improvements in device performance. This review systematically summarizes recent progress in preparing halide perovskite thin films via PLD, with a particular focus on epitaxial growth strategies designed to overcome the intrinsic limitations of polycrystalline films. First, the basic principles of PLD and their application in depositing polycrystalline perovskite films are outlined, including process control and device integration. Next, the article concentrates on advanced research in the epitaxial growth of single‑crystal perovskite films using PLD. Key issues such as lattice matching, strain engineering, and the construction of low‑defect interfaces are discussed, along with strategies for achieving high‑quality epitaxy on various substrates. Finally, we analyze the challenges and future directions of PLD for applications in integrated optoelectronics, tandem solar cells, and flexible devices, with the aim of providing assistance and guidance for relevant researchers.

Key words: pulsed laser deposition, halide perovskite thin films, epitaxial growth, optoelectronic devices

中图分类号: