• •
曹丙强1, 李兴牧1, 魏浩铭2, 单衍苏1
收稿日期:2025-11-06
修回日期:2025-12-18
作者简介:曹丙强(1978-), 教授. E-mail: mse_caobq@ujn.edu.cn.
基金资助:CAO Bingqiang1, LI Xingmu1, WEI Haoming2, SHAN Yansu1
Received:2025-11-06
Revised:2025-12-18
About author:CAO Bingqiang (1978-), professor. E-mail: mse_caobq@ujn.edu.cn
Supported by:摘要: 脉冲激光沉积(Pulsed Laser Deposition, PLD)是一种清洁且用途广泛的薄膜制备技术,该方法可精确控制薄膜厚度、结晶取向及实现精确的化学计量比转移,常用于制备各种复杂组分的功能薄膜材料。卤化物钙钛矿材料因其优异的光电特性而备受关注,已在太阳能电池、光电探测器、发光二极管等领域取得巨大进展。然而,传统多晶薄膜的高缺陷密度严重制约了器件性能的进一步提升。本文系统综述了利用PLD技术制备卤化物钙钛矿薄膜的最新研究进展,重点探讨了如何通过外延生长策略克服多晶薄膜的固有缺陷获得高质量薄膜及相关光电器件。文章首先概述了PLD的基本原理及其在钙钛矿多晶薄膜沉积中的工艺调控与器件应用,随后着重聚焦于PLD外延生长单晶钙钛矿薄膜的前沿进展,围绕晶格匹配、应力调控与低缺陷界面构筑等关键科学问题,阐述了在不同衬底上实现高质量钙钛矿薄膜外延生长的策略及应用。最后,分析了PLD在面向钙钛矿半导体薄膜在光电集成、叠层电池及柔性器件等方面面临的挑战与未来发展方向,希望能为相关研究工作者提供一些帮助与指导。
中图分类号:
曹丙强, 李兴牧, 魏浩铭, 单衍苏. 脉冲激光沉积制备卤化物钙钛矿薄膜研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250449.
CAO Bingqiang, LI Xingmu, WEI Haoming, SHAN Yansu. Advances in the Preparation of Halide Perovskite Thin Films by Pulsed Laser Deposition[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250449.
| [1] SMITH H M, TURNER A J A O. Vacuum deposited thin films using a ruby laser.Applied Optics, 1965, 4(1): 147. [2] DIJKKAMP D, VENKATESAN T, WU X, et al. Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high TC bulk material. Applied Physics Letters, 1987, 51(8): 619. [3] WAGNER G, LANGE U, BENTE K,et al. Defect structure of monocrystalline (001)-oriented Zn0.62Cu0.19In0.19S films grown on GaP by pulsed laser deposition (PLD). Journal of Crystal Growth, 2000, 209(1): 68. [4] LU X Y, FAN X J, ZHANG H,et al. Review on preparation of perovskite solar cells by pulsed laser deposition. Inorganics, 2024, 12(5): 128. [5] SHEPELIN N A, TEHRANI Z P, OHANNESSIAN N,et al. A practical guide to pulsed laser deposition. Chemical Society Reviews, 2023, 52(7): 2294. [6] MOMBLONA C, GIL-ESCRIG L, BANDIELLO E,et al. Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy Environ. Sci., 2016, 9(11): 3456. [7] KREBS H-U, WEISHEIT M, FAUPEL J, et al. Advances in Solid State Physics: Pulsed Laser Deposition (PLD)-a Versatile Thin Film Technique. Springer, 2003: 505-518. [8] HUANG Y, ZHANG L C, WANG J B, et al. Enhanced photoresponse of n-ZnO/p-GaN heterojunction ultraviolet photodetector with high-quality CsPbBr3 films grown by pulse laser deposition. Journal of Alloys and Compounds, 2019, 802: 70. [9] SINGH R K, NARAYAN J J P R B. Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model.Physical Review B, 1990, 41(13): 8843. [10] WILLMOTT P, HUBER J J R O M P. Pulsed laser vaporization and deposition.Reviews of Modern Physics, 2000, 72(1): 315. [11] AHMADI M, WU T, HU B J A M. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics.Advanced Materials, 2017, 29(41): 1605242. [12] STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A,et al. Inorganic and hybrid perovskite based laser devices: a review. Materials, 2019, 12(6): 859. [13] WANG H L, LIU H C, LI W P,et al. Inorganic perovskite solar cells based on carbon electrodes. Nano Energy, 2020, 77: 105160. [14] BARTEL C J, SUTTON C, GOLDSMITH B R,et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5(2): 693. [15] QIAO H W, YANG S, WANG Y,et al. A gradient heterostructure based on tolerance factor in high‐performance perovskite solar cells with 0.84 fill factor. Advanced Materials, 2019, 31(5): 1804217. [16] CHEN Y, LI F Q, ZHANG M,et al. Recent progress on boosting the perovskite film quality of all-inorganic perovskite solar cells. Coatings, 2023, 13(2): 281. [17] WANG Y, WANG Y, DOHERTY T A S,et al. Octahedral units in halide perovskites. Nature Reviews Chemistry, 2025, 9(4): 261. [18] KIM H S, SEO J Y, PARK N G.Material and device stability in perovskite solar cells.Chemsuschem, 2016, 9(18): 2528. [19] STRANKS S D, EPERON G E, GRANCINI G,et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341. [20] KOJIMA A, TESHIMA K, SHIRAI Y,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050. [21] LI F Z, DENG X, SHI Z S,et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nature Photonics, 2023, 17(6): 478. [22] GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photonics, 2014, 8(7): 506. [23] BAI D, BIAN H, JIN Z,et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy, 2018, 52: 408. [24] UNGER E L, HOKE E T, BAILIE C D,et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 2014, 7(11): 3690. [25] CORREA-BAENA J P, SALIBA M, BUONASSISI T,et al. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739. [26] AN B, MA Y, CHU F,et al. Growth of centimeter scale Nb1-xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition. Nano Research, 2022, 15(3): 2608. [27] DING X H, CHEN H B, WU Y H,et al. Triple cation additive NH3+C2H4NH2+C2H4NH3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells. Journal of Materials Chemistry A, 2020, 8(24): 12177. [28] WAN X J, YU Z, TIAN W M,et al. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46: 8. [29] HSIAO S Y, LIN H L, LEE W H,et al. Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Advanced Materials, 2016, 28(32): 7013. [30] BECKER P, MáRQUEZ J A, JUST J,et al. Low temperature synthesis of stable γ‐CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Advanced Energy Materials, 2019, 9(22): 1900555. [31] SHAHIDUZZAMAN M, YONEZAWA K, YAMAMOTO K,et al. Improved reproducibility and intercalation control of efficient planar inorganic perovskite solar cells by simple alternate vacuum deposition of PbI2 and CsI. ACS Omega, 2017, 2(8): 4464. [32] FISSEL A, SCHRöTER B, RICHTER W J A P L. Low‐temperature growth of SiC thin films on Si and 6H-SiC by solid‐source molecular beam epitaxy.Applied Physics Letters, 1995, 66(23): 3182. [33] TONG G, CHEN T, LI H,et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65: 104015. [34] YAN S, PATEL J B, LEE J E,et al. A templating approach to controlling the growth of coevaporated halide perovskites. ACS Energy Letters, 2023, 8(10): 4008. [35] HE T, DONG N, YAO Y,et al. Systematic study on CsSnBr3 perovskite microcrystals: chemical vapor deposition growth, structure, stability and optical properties. Chinese Journal of Chemical Physics, 2023, 36(4): 477. [36] LIU D D, LI X L, SHI C W,et al. CH3NH3PbI3 thin films prepared by pulsed laser deposition for optoelectronic applications. Materials Letters, 2017, 188: 271. [37] MIYADERA T, SUGITA T, TAMPO H,et al. Highly controlled codeposition rate of organolead halide perovskite by laser evaporation method. ACS Applied Materials & Interfaces, 2016, 8(39): 26013. [38] BANSODE U, OGALE S.On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications.Journal of Applied Physics, 2017, 121(13): 133107. [39] SOTO-MONTERO T, MORALES-MASIS M J A E L. Laser deposition of metal halide perovskites.ACS Energy Letters, 2024, 9(8): 4199. [40] BHANDARI S, HAO B Y, WATERS K,et al. Two-dimensional gold quantum dots with tunable bandgaps. ACS Nano, 2019, 13(4): 4347. [41] BANSODE U, NAPHADE R, GAME O,et al. Hybrid perovskite films by a new variant of pulsed excimer laser deposition: a room-temperature dry process. Journal of Physical Chemistry C, 2015, 119(17): 9177. [42] LIANG Y G, YAO Y Y, ZHANG X H,et al. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Advances, 2016, 6(1): 015001. [43] KRALJ S, ARTUK K, WIECZOREK A,et al. Template‐Assisted growth of CsxFA1-xPbI3 with pulsed laser deposition for single junction perovskite solar cells. Advanced Energy Materials, 2025, 15(24): 2406033. [44] MOHD ZUBIR N S, ZHANG H, ZOU G,et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature. Journal of Electronic Materials, 2019, 48(11): 7562. [45] CAI J X, LI F X, ZHANG X S,et al. Application of pulsed laser deposition (PLD) technology in the preparation of two-dimensional (2D) film materials. Materials, 2025, 18(13): 2999. [46] YANG J, YAN D J C S R. Weak epitaxy growth of organic semiconductor thin films.Chemical Society Reviews, 2009, 38(9): 2634. [47] WANG H, WU Y, MA M Y,et al. Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Applied Energy Materials, 2019, 2(3): 2305. [48] HUANG Y, ZHANG L C, WANG J B,et al. Growth and optoelectronic application of CsPbBr3 thin films deposited by pulsed-laser deposition. Optics Letters, 2019, 44(8): 1908. [49] SOTO-MONTERO T, SOLTANPOOR W, KRALJ S, et al. Single-source pulsed laser deposition of MAPbI3. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021: 1318-1323. [50] SONG Q L, ZHANG H, JIN X,et al. Highly stable all-inorganic CsPbBr3 perovskite solar cells based on pulsed laser deposition. Applied Physics Letters, 2023, 123(9): 092103. [51] CHENG X M, CUI W Y, ZHU L,et al. Vertical MSM-type CsPbBr3 thin film photodetectors with fast and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. [52] JI L, HSU H Y, LEE J C,et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Letters, 2018, 18(2): 994. [53] TSUKAZAKI A, OHTOMO A, ONUMA T,et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42. [54] CHEN J, MORROW D J, FU Y P,et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). Journal of the American Chemical Society, 2017, 139(38): 13525. [55] JIA R, XIN Y, POTTER M,et al. Long-distance remote epitaxy. Nature, 2025, 646(8085): 584. [56] BORRI C, CALISI N, GALVANETTO E,et al. First proof-of-principle of inorganic lead halide perovskites deposition by magnetron-sputtering. Nanomaterials, 2019, 10(1): 60. [57] XU F, LI Y J, YUAN B L,et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 2021, 129(24): 245303. [58] MA X Y, ZHENG H F, WANG Y L, et al. Plasma sputtering halide perovskite for photovoltaic applications. ACS Materials Letters, 2024, 6(11): 5076. [59] JUNG S Y, HAN D H, NING R,et al. Extreme sputtering: Epitaxy of multifunctional oxides heterostructures. Journal of Advanced Ceramics, 2024, 13(12): 1919. [60] JIA C M, ZHAO X Y, LAI Y H,et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60: 476. [61] RIEGER J, KISSLINGER T, RAABGRUND A,et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations. Physical Review Materials, 2023, 7(3): 035403. [62] DE PADOVA P, OTTAVIANI C, OLIVIERI B,et al. The role of SiO2 buffer layer in the molecular beam epitaxy growth of CsPbBr3 perovskite on Si (111). Scientific Reports, 2024, 14(1): 23618. [63] MARKOV I, STOYANOV S J C P. Mechanisms of epitaxial growth.Contemporary Physics, 1987, 28(3): 267. [64] ROYER L J B D M. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d'espèces différentes.Bulletin de Minéralogie, 1928, 51(1): 7. [65] LUNT R R, SUN K, KRöGER M,et al. Ordered organic-organic multilayer growth. Physical Review B, 2011, 83(6): 064114. [66] DONG J C, ZHANG L N, DAI X Y,et al. The epitaxy of 2D materials growth. Nature Communications, 2020, 11(1): 5862. [67] CAO L, XU Y, ZHAO B,et al. A structural investigation of high-quality epitaxial thin films. Journal of Physics D: Applied Physics, 1997, 30(10): 1455. [68] EASON R. Materials Science, Engineering, Physics.Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials. John Wiley & Sons, 2006. [69] WANG B, ZHANG B Z, ZHONG S P,et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. Journal of Materials Chemistry C, 2020, 8(15): 4988. [70] HU Y, JIANG J, ZHANG L, et al. Epitaxy and strain engineering of halide perovskites. Halide Perovskite Semiconductors, 2024: 351-375. [71] CAO H, ZHANG J, BAI W, et al. Molecular beam epitaxy, photoluminescence from Mn2+ multiplets and self-trapped exciton states of γ-MnTe single-crystalline thin films. Applied Surface Science, 2023, 611: 155733. [72] LO Y J A P L. New approach to grow pseudomorphic structures over the critical thickness.Applied Physics Letters, 1991, 59(18): 2311. [73] OHNISHI T, KOINUMA H, LIPPMAA M J A S S. Pulsed laser deposition of oxide thin films.Applied Surface Science, 2006, 252(7): 2466. [74] CHRISTEN H M, ERES G J J O P C M. Recent advances in pulsed-laser deposition of complex oxides.Journal of Physics: Condensed Matter, 2008, 20(26): 264005. [75] JIA R, KUM H S, SUN X,et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. Journal of Vacuum Science & Technology A, 2021, 39(4): 040405. [76] HAVELIA S, WANG S, SKOWRONSKI M,et al. Controlling the Bi content, phase formation, and epitaxial nature of BiMnO3 thin films fabricated using conventional pulsed laser deposition, hybrid pulsed laser deposition, and solid state epitaxy. Journal of Applied Physics, 2009, 106(12): 123509. [77] OKA D, HIROSE Y, FUKUMURA T,et al. Heteroepitaxial growth of perovskite CaTaO2N thin films by nitrogen plasma-assisted pulsed laser deposition. Crystal Growth & Design, 2014, 14(1): 87. [78] WANG L L, CHEN P, KUTTIPILLAI P S,et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 2019, 11(35): 32076. [79] YUAN S Q, GAN B, QIAN L,et al. Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy. Scripta Materialia, 2021, 203: 114. [80] WANG Y, SUN X, CHEN Z,et al. High‐temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Advanced Materials, 2017, 29(35): 1702643. [81] CHEN Y M, LEI Y S, LI Y H,et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577(7789): 209. [82] ZHANG J S, GUO Q, LI X, et al. Solution-Processed Epitaxial Growth of Arbitrary Surface Nanopatterns on Hybrid Perovskite Monocrystalline Thin Films. Acs Nano, 2020, 14(9): 11029-11039. [83] WANG L, CHEN P, THONGPRONG N,et al. Unlocking the single‐domain epitaxy of halide perovskites. Advanced Materials Interfaces, 2017, 4(22): 1701003. [84] MATSUBARA S, MIURA S, MIYASAKA Y,et al. Preparation of epitaxial ABO3 perovskite‐type oxide thin films on a (100) MgAl2O4/Si substrate. Journal of Applied Physics, 1989, 66(12): 5826. [85] ZHU H F, MA H F, ZHAO Y Y.In-situ growth of high-quality epitaxial BiFeO3 thin film via off-axis RF magnetron sputtering. Vacuum, 2018, 157: 428. [86] SOLOMON J S, SOTO-MONTERO T, BIRKHöLZER Y A,et al. Room-temperature epitaxy of α-CH3NH3PbI3 halide perovskite by pulsed laser deposition. Nature Synthesis, 2025, 4(4): 432. [87] CUI W Y, ZHOU Y, CHENG X M,et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity. Applied Physics Letters, 2024, 125(18): 182102. [88] ZHOU Y, YUAN B L, WEI H M,et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 2022, 120(11): 112109. [89] XING R F, SHI P, WU Z F, et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications. ACS Applied Electronic Materials, 2022, 4(3): 1351. [90] SHAN Y, CUI W, ZHOU Y,et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors. Journal of Materials Chemistry C, 2025, 13(18): 9072. [91] WANG A-W, ZHU L-P, SHAN Y-S,et al. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. [92] ZHU L P, CHENG X M, WANG A W,et al. High performance CsPbBr3 epitaxial film photodetector with ultralow dark current and record detectivity. Applied Physics Letters, 2023, 123(21): 212105. [93] BRENNER P, STULZ M, KAPP D,et al. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109(14): 141106. [94] LU Y, JUNG Y K, DUBAJIC M,et al. Layer-by-layer epitaxial growth of perovskite heterostructures with tunable band offsets. Science, 2025, 390(6774): 716. |
| [1] | 肖娜, 潘洋, 宋云, 吴晓京, 傅正文, 周永宁. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5): 494-500. |
| [2] | 张聪, 康朝阳, 宗海涛, 李明, 梁珊珊, 曹国华. 应力对蓝宝石衬底上生长二氧化钒薄膜结构和光电性能的调控[J]. 无机材料学报, 2018, 33(11): 1225-1231. |
| [3] | 张志萍, 刘红飞, 潘坤旻, 陈小兵, 曾祥华. Sc2W3O12薄膜制备及其负热膨胀性能[J]. 无机材料学报, 2015, 30(12): 1278-1282. |
| [4] | 吕艳红, 陈吉堃, DOBELI Max, 李宇龙, 史 迅, 陈立东. 脉冲激光沉积中高能量密度激光密度对Cu2Se 热电薄膜成分与性能的影响[J]. 无机材料学报, 2015, 30(10): 1115-1120. |
| [5] | 晏益志, 殷学鹏, 刘 翔, 陈清明. 衬底温度和生长氧压对La0.67Sr0.33MnO3:Ag0.08薄膜激光感生电压效应的影响[J]. 无机材料学报, 2014, 29(7): 753-757. |
| [6] | 邱智文, 杨晓朋,韩 军, 曾雪松, 李新化, 曹丙强. 高压PLD法生长p型钠掺杂氧化锌纳米线阵列[J]. 无机材料学报, 2014, 29(2): 155-161. |
| [7] | 陈 丹, 吕建国, 黄靖云, 金豫浙, 张昊翔, 叶志镇. AZO薄膜用于GaN基LED透明电极的性能研究[J]. 无机材料学报, 2013, 28(06): 649-652. |
| [8] | 李廷先, 张 铭, 胡 州, 李扩社, 于敦波, 严 辉. 多铁性BaTiO3/La2/3Sr1/3MnO3复合薄膜的制备及其强磁电效应的研究[J]. 无机材料学报, 2012, 27(3): 291-295. |
| [9] | 程艳玲, 索红莉, 刘 敏, 马 麟, 张 腾. 硝酸盐法在Ni5W织构基带上外延生长La2Zr2O7过渡层的研究[J]. 无机材料学报, 2011, 26(5): 481-485. |
| [10] | 刘红飞, 张志萍, 张 伟, 陈小兵, 程晓农. 脉冲激光沉积ZrW2O8薄膜的制备和性能[J]. 无机材料学报, 2011, 26(5): 540-544. |
| [11] | 李 曼, 刘保亭, 王玉强, 王宽冒. 快速退火对 Ni-Al-O 栅介质结构和介电性能的影响[J]. 无机材料学报, 2011, 26(3): 257-260. |
| [12] | 邓赞红, 方晓东, 陶汝华, 董伟伟, 周曙, 孟钢, 邵景珍. 沉积激光能量对 CuAlO2 薄膜光学性质的影响[J]. 无机材料学报, 2011, 26(3): 281-285. |
| [13] | 何 邕, 李效民, 高相东, 冷 雪, 王 炜. 氧等离子体辅助脉冲激光沉积法制备PMN-PT薄膜的微观结构和电学性能[J]. 无机材料学报, 2011, 26(11): 1227-1232. |
| [14] | 王 霖, 田林海, 尉国栋, 高凤梅, 郑金桔, 杨为佑. 石墨烯外延生长及其器件应用研究进展[J]. 无机材料学报, 2011, 26(10): 1009-1019. |
| [15] | 程学瑞1, 戚泽明2, 3, 张国斌2, 3, 李亭亭2, 3, 贺 博2, 3, 尹 民1. HfO2栅介质薄膜的结构和介电性质研究[J]. 无机材料学报, 2010, 25(5): 468-472. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||