无机材料学报

• 研究论文 • 上一篇    下一篇

叠层量子点发光二极管的研究进展

钟鸿, 张宇豪, 单青松, 胡天鋆, 曾海波   

  1. 南京理工大学 材料科学与工程学院,新型显示材料与器件工信部重点实验室,南京 210094
  • 收稿日期:2025-10-11 修回日期:2025-11-13
  • 通讯作者: 单青松, 副研究员. E-mail: shanqingsong@njust.edu.cn; 曾海波, 教授. E-mail: zeng.haibo@njust.edu.cn
  • 作者简介:钟 鸿(2001-), 男, 硕士.E-mail: zhonghong@njust.edu.cn
  • 基金资助:
    国家重点研发计划(2024YFB3612400, 2024YFA1210002); 国家自然科学基金(62574111, 62204120, 52533012, U24A20286, 52131304, 62261160392); 江苏省国际合作项目(BZ2024038); 中央高校基本科研业务费专项资金 (30925010415).

Research Progress of Tandem Quantum-dot Light-emitting Diodes

ZHONG Hong, ZHANG Yuhao, SHAN Qingsong, HU Tianjun, ZENG Haibo   

  1. MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2025-10-11 Revised:2025-11-13
  • Contact: SHAN Qingsong, associate professor. E-mail: shanqingsong@njust.edu.cn; ZENG Haibo, professor. E-mail: zeng.haibo@njust.edu.cn
  • About author:ZHONG Hong(2001-), male, Master candidate. E-mail: zhonghong@njust.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2024YFB3612400, 2024YFA1210002); National Natural Science Foundation of China(62574111, 62204120, 52533012, U24A20286, 52131304, 62261160392); International Cooperation Program of Jiangsu Province of China(BZ2024038); Fundamental Research Funds for the Central Universities (No.30925010415).

摘要: 叠层量子点发光二极管(Tandem quantum-dot light-emitting diodes, TQLED)作为量子点发光二极管(Quantum-dot light-emitting diodes, QLED)技术的重要延伸,通过引入多发光单元与电荷产生层结构,实现了外量子效率、亮度及寿命的显著提升,成为新一代高性能显示器件的研究热点。尽管TQLED的研究已经取得了巨大进展,其仍面临着电荷注入不平衡、溶液工艺兼容性差、材料环保性及器件长期工作下稳定性不足等问题。本文首先介绍了TQLED的基本结构与工作原理,对比了其相对于普通单层QLED存在的优势,并详细介绍了电荷产生层的工作原理及其在多发光单元协同工作中发挥的关键作用。随后,围绕倒置、正置、多发光材料以及其他创新叠层器件结构,对不同材料体系、加工工艺以及结构设计在提升器件性能方面的研究进展进行了系统分析,总结了叠层量子点发光二极管在效率、亮度及稳定性等方面实现的突破。最后,指出了当前TQLED仍面临的挑战,并从材料创新、结构优化和工艺革新等方面提出了未来可能的发展路径与研究重点。特别强调了开发环境友好型量子点材料、创新溶液加工工艺以及构建稳定的界面结构的重要性。这些分析旨在为TQLED的后续技术开发提供理论指导和技术参考,推动其从实验室研究向产业化应用加速迈进。

关键词: 叠层, 量子点, 发光二极管, 电荷产生层

Abstract: Tandem quantum-dot light-emitting diodes (TQLED), as an important extension of quantum-dot light-emitting diodes (QLED) technology, have achieved remarkable improvements in external quantum efficiency, brightness, and operational lifetime through the introduction of multiple emission units and charge generation layers. They have thus become a major research focus in the development of next-generation high-performance display devices. However, despite the substantial progress made in TQLED research, it still faces several critical challenges, such as imbalanced charge injection, poor compatibility with solution-processing techniques, insufficient environmental friendliness of materials, and inadequate stability of devices during long-term operation. This paper first introduces the basic structure and working principles of TQLED, compares its advantages over conventional single-layer QLED, and elaborates on the working principle of the charge generation layer as well as its key role in the collaborative operation of multiple emission units. Subsequently, focusing on inverted, conventional, multiple emission material-based, and other innovative tandem device structures, the paper conducts a systematic analysis of the research progress in improving device performance through different material systems, processing technologies, and structural designs. It also summarizes the breakthroughs achieved by TQLED in terms of efficiency, brightness, and stability. Finally, it identifies current challenges in TQLEDs and proposes potential future development pathways alongside research priorities from perspectives such as material innovation, structural optimization, and process refinement. Special emphasis is placed on the importance of developing environmentally friendly quantum dot materials, innovating solution-processing techniques, and constructing stable interface structures. These analyses aim to provide theoretical guidance and technical references for the subsequent technological development of TQLED, accelerating their transition from laboratory research to industrial application.

Key words: tandem, quantum-dots, light-emitting diodes, charge generation layer

中图分类号: