[1] CHEN K X, LI L.Ordered structures with functional units as a paradigm of material design.Advanced Materials, 2019, 31(32): 1901115. [2] XU J, SU L B, XU X D, et al. Recent developments and research frontier of laser crystals. Journal of Inorganic Materials, 2006, 21(5): 1025. [3] LI N, LIU B, SHI J J,et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 2019, 34(6): 573. [4] WANG H D, WANG Y, ZHU Z J, et al. Crystal growth and structural, optical, and visible fluorescence traits of Dy3+-doped SrGdGa3O7 crystal. Journal of Inorganic Materials, 2023, 38(12): 1475. [5] WANG S Y, HUA R, ZHAO Y Q,et al. Laser treatment for diabetic retinopathy: history, mechanism, and novel technologies. Journal of Clinical Medicine, 2024, 13(18): 5439. [6] UETAKE S, YAMAGUCHI A, KATO S,et al. High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium. Applied Physics B, 2008, 92(1): 33. [7] LEMKE N D, LUDLOW A D, BARBER Z W,et al. Spin-1/2 optical lattice clock. Physical Review Letters, 2009, 103(6): 063001. [8] KATORI H, TAKAMOTO M, PAL’CHIKOV V G,et al. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Physical Review Letters, 2003, 91(17): 173005. [9] JEYS T H.Development of mesospheric sodium laser beacon for atmospheric adaptive optics. LEOS '90. Conference Proceedings IEEE Lasers and Electro-Optics Society 1990 Annual Meeting, Boston, 2002: 38. [10] BIAN Q, BO Y, ZUO J W,et al. Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class pulsed laser for adaptive optical telescope applications. Scientific Reports, 2018, 8: 9222. [11] LU Y H, XIE G, ZHANG L,et al. High-energy all-solid-state sodium beacon laser with line width of 0.6 GHz. Applied Physics B, 2015, 118(2): 253. [12] KAPOOR V, KARPOV V, LINTON C,et al. Solid state yellow and orange lasers for flow cytometry. Cytometry Part A, 2008, 73A(6): 570. [13] TANAKA T, UCHIDA K, ISHITANI Y,et al. Lasing operation up to 200 K in the wavelength range of 570-590 nm by GaInP/AlGaInP double-heterostructure laser diodes on GaAsP substrates. Applied Physics Letters, 1995, 66(7): 783. [14] LEDENTSOV N N, SHCHUKIN V A, SHERNYAKOV Y M,et al. Room-temperature yellow-orange (In, Ga, Al)P-GaP laser diodes grown on (n11) GaAs substrates. Optics Express, 2018, 26(11): 13985. [15] NEVSKY A Y, BRESSEL U, ERNSTING I,et al. A narrow-line-width external cavity quantum dot laser forhigh-resolution spectroscopy in the near-infrared and yellow spectral ranges. Applied Physics B, 2008, 92(4): 501. [16] PIZZOCARO M, COSTANZO G A, GODONE A,et al. Realization of an ultrastable 578-nm laser for an Yb lattice clock. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 426. [17] MIMOUN E, DE SARLO L, ZONDY J J,et al. Sum-frequency generation of 589 nm light with near-unit efficiency. Optics Express, 2008, 16(23): 18684. [18] BEGE R, BLUME G, JEDRZEJCZYK D,et al. Yellow laser emission at 578 nm by frequency doubling with diode lasers of high radiance at 1156 nm. Applied Physics B, 2017, 123(4): 109. [19] CHATTERJEE S, CHERNIKOV A, HERRMANN J, et al. Power scaling and heat management in high-power VECSELs. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), Munich, 2011: 1. [20] BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers.Optics Express, 2012, 20(12): 12906. [21] METZ P W, MOGLIA F, REICHERT F, et al. Novel rare earth solid state lasers with emission wavelengths in the visible spectral range. 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, 2013: 1. [22] XIA Z C, YANG F G, QIAO L,et al. End pumped yellow laser performance of Dy3+: ZnWO4. Optics Communications, 2017, 387: 357. [23] KRÄNKEL C, MARZAHL D T, MOGLIA F,et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews, 2016, 10(4): 548. [24] RAO V R, DEVI L L, JAYASANKAR C K,et al. Luminescence and energy transfer studies of Ce3+/Dy3+ doped fluorophosphate glasses. Journal of Luminescence, 2019, 208: 89. [25] LIANG X L, ZHU C F, YANG Y X,et al. Luminescent properties of Dy3+-doped and Dy3+-Tm3+ co-doped phosphate glasses. Journal of Luminescence, 2008, 128(7): 1162. [26] WAN X, LIN Y Q, TIE S L,et al. Luminescence and energy transfer in Dy3+/Tb3+ co-doped CaO-Al2O3-B2O3-RE2O3 glass. Journal of Non-Crystalline Solids, 2011, 357(19/20): 3424. [27] BOLOGNESI G, PARISI D, CALONICO D,et al. Yellow laser performance of Dy3+ in Co-doped Dy, Tb: LiLuF4. Optics Letters, 2014, 39(23): 6628. [28] 李长磊, 姚文明, 陈建生, 等. 基于共掺杂Dy-Tb:YAG晶体的全固态黄光激光特性研究. 中国激光, 2019, 46(11): 61. [29] HUANG Y S, GONG X R, ZHANG L Z,et al. First achievement of yellow laser operation in Dy3+-doped borate crystals. ACS Applied Materials & Interfaces, 2024, 16(37): 49556. [30] HUANG Y S, LI Y, PAN S Y,et al. Spectroscopy and laser performance of Dy3+: LaMgB5O10 crystal. Optics & Laser Technology, 2025, 183: 112393. [31] ZHANG S D, WANG S T, SHEN X D,et al. Czochralski growth of rare-earth orthosilicates-Y2SiO5 single crystals. Journal of Crystal Growth, 1999, 197(4): 901. [32] ZHENG L H, ZHAO G J, YAN C F,et al. Raman spectroscopic investigation of pure and ytterbium-doped rare earth silicate crystals. Journal of Raman Spectroscopy, 2007, 38(11): 1421. [33] RICHARDS B O, TEDDY-FERNANDEZ T, JOSE G,et al. Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide. Laser Physics Letters, 2013, 10(8): 085802. [34] MIRZAI A, AHADI A, MELIN S,et al. First-principle investigation of doping effects on mechanical and thermodynamic properties of Y2 SiO5. Mechanics of Materials, 2021, 154: 103739. [35] THIBAULT F, PELENC D, DRUON F,et al. Efficient diode-pumped Yb3+: Y2SiO5 and Yb3+: Lu2SiO5 high-power femtosecond laser operation. Optics Letters, 2006, 31(10): 1555. [36] LI C, MONCORGÉ R, SOURIAU J C,et al. Efficient 2.05 μm room temperature Y2SiO5: Tm3+ cw laser. Optics Communications, 1993, 101(5/6): 356. [37] CHEPYGA L M, HERTLE E, ALI A,et al. Synthesis and photoluminescent properties of the Dy3+ doped YSO as a high-temperature thermographic phosphor. Journal of Luminescence, 2018, 197: 23. [38] VERMA N, KAUR J, DUBEY V,et al. Luminescence properties of Y2SiO5 phosphors: a review. Inorganic Chemistry Communications, 2023, 147: 110234. [39] ANTIĆ Ž, ĆIRIĆ A, SEKULIĆ M,et al. Thirty-fold increase in relative sensitivity of Dy3+ luminescent Boltzmann thermometers using multiparameter and multilevel cascade temperature readings. Crystals, 2023, 13(6): 884. [40] BECERRO A I, ESCUDERO A.Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds.Phase Transitions, 2004, 77(12): 1093. [41] LIU X K, GONG Q R, HUANG C H,et al. Crystal growth, property investigation, and the deactivation effect of Tb3+ in Dy3+/Tb3+ codoped LiYF4 crystals: promising crystals for all-solid-state yellow lasers. Crystal Growth & Design, 2024, 24(9): 3699. [42] ZHANG X, LIU J Y, ZHENG J P,et al. Single crystal growth and cold white light application of Dy, Tb: CaWO4 crystals. CrystEngComm, 2025, 27(17): 2672. [43] DING S J, LI H Y, ZHANG Q L,et al. The investigations of Dy: YAG and Dy, Tb: YAG as potentially efficient GaN blue LD pumped solid state yellow laser crystals. Journal of Luminescence, 2021, 237: 118174. [44] KRUPKE W F, SHINN M D, MARION J E,et al. Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet. Journal of the Optical Society of America B, 1986, 3(1): 102. [45] ZHAO E B, XIA H P, ZHOU X, et al. Effectively enhanced yellow light emission of Y3+-doped Dy3+/Tb3+:Na5Lu9F32 single crystals (invited). Chinese Journal of Lasers, 2025, 52(18): 1803037. [46] CUI J, XIAO X S, XU Y T,et al. Mid-infrared emissions of Dy3+doped Ga-As-S chalcogenide glasses and fibers and their potential for a 42 μm fiber laser. Optical Materials Express, 2018, 8(8): 2089. [47] LI Y H, NATAKORN S, CHEN Y,et al. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Frontiers in Physics, 2020, 8: 576862. |