[1] XU Y, WANG C, HUANG Y,et al. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 2021, 80: 105545. [2] XU Z, WU Z S.Scalable production of high-performance electrocatalysts for electrochemical water splitting at large current densities. eScience, DOI: org/10.1016/j.esci.2024.100334. [3] 李宇明, 徐砚文, 刘红宇, 等. 镍基磷化物的合成及其在电解水制氢中的应用. 化工学报, 2024, 75(12): 4385-4402. [4] 陈心悦, 陈彬剑, 毛煜东, 等. 碱性电解水析氢催化剂的研究进展及展望. 化工进展, DOI: org/10.16085/j.issn.1000-6613.2024-1750. [5] HU C, LV C, ZENG N,et al. Recent advances in Ni-based electrocatalysts for hydrogen evolution reaction. Energy Technology, 2023, 11(1): 2201048. [6] HE H, MAI J H, HU K S, et al. Recent advances in electrocatalysts for efficient hydrogen evolution reaction. Rare Metals, 2025, 44: 2208. [7] 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议. 化工进展, 2022, 41(S1): 118. [8] 张正, 宋凌珺. 电解水制氢技术: 进展、挑战与未来展望. 工程科学学报, 2025, 47(2): 282. [9] DOU S, WANG X, WANG S Y,et al. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods, 2019, 3(1): 1800211. [10] 张博轩, 崔金星, 李智芳, 等. 非贵金属析氢电催化剂的结构调控研究进展. 化学通报, 2023, 86(7): 784. [11] Do H H, Tran N T, VAN TRAN V.Recent advancements and perspectives in MoO2-based heterostructures for electrochemical hydrogen evolution reaction.International Journal of Hydrogen Energy, 2025, 105: 234. [12] XIONG W, YIN H, WU T,et al. Challenges and opportunities of transition metal oxides as electrocatalysts. Chemistry-A European Journal, 2023, 29(5): e202202872. [13] ZHU Y L, LIN Q, ZHONG Y J,et al. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy & Environmental Science, 2020, 13: 3361. [14] SHIRAZ H G, CRISPIN X, BERGGREN M.Transition metal sulfides for electrochemical hydrogen evolution.International Journal of Hydrogen Energy, 2021, 46(47): 24060. [15] GUO Y, PARK T, YI J W, et al.Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting.Advanced Materials, 2019, 31(17): 1807134. [16] 万凯, 向志朋, 刘文博, 等. 过渡金属硫化物电解水析氢/析氧反应电催化剂研究进展. 科学通报, 2022, 67(19): 2126. [17] WANG Z Y, LIU S L, DUAN W,et al. Transition metal selenides as catalysts for electrochemical water splitting. International Journal of Hydrogen Energy, 2024, 60: 1414. [18] LI Y, WANG C, ABDUKAYUM A, et al. Advances in green hydrogen generation based on MoSe2 hybrid catalysts. Electrochimica Acta, 2024, 503:144891. [19] 白苗苗, 刘江英, 韩婕, 等. 硒化镍基电催化水裂解催化剂的研究进展. 功能材料, 2023, 54(11): 11050. [20] DU M, LI D, LIU S.F,et al. Transition metal phosphides: a wonder catalyst for electrocatalytic hydrogen production. Chinese Chemical Letters, 2023, 34(9): 108156. [21] DENG R, GUO M, WANG C, et al. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. Nano Materials Science, 2024, 6(2): 139. [22] ZHANG W Y, GUO R H, YUE Q X,et al. High-entropy phosphide bifunctional catalyst: preparation and performance of efficient water splitting. Journal of Inorganic Materials, 2024, 39(11): 1265. [23] PENG X, PI C, ZHANG X,et al. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy & Fuels, 2019, 3(2): 366. [24] 蒋博龙, 崔艳艳, 史顺杰, 等. 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究. 化学学报, 2022, 80(10): 1394. [25] JIANG J, QIU Y, DONG H,et al. Enhancing hydrogen evolution by heterointerface engineering of Ni/MoN catalysts. Journal of Colloid and Interface Science, 2025, 686: 681-690. [26] XU C, HONG Y, LI Z, et al. Transition metal-based heterojunctions for alkaline electrocatalytic water splitting. Coordination Chemistry Reviews, 2025, 523: 216287. [27] LONG X, MENG J, GU J,et al. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chinese Journal of Structural Chemistry, 2022, 41(4): 2204046. [28] ZHAO G, JIANG Y, DOU S X, et al. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Science Bulletin, 2021, 66(1): 85. [29] REN X P, LI Q, LING F,et al. Construction of MoO2/MoS2 heterojunction on carbon nanotubes as high-efficiency electrocatalysts for H2 production. CrystEngComm, 2023, 25: 5238. [30] XU D, ZHANG S N, LI X H,et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1. [31] ZHANG H M, LI R, MUHAMMAD H,et al. Recent progress in Mott-Schottky junction electrocatalysts for the pH-universal hydrogen evolution reaction. Materials Chemistry Frontiers, 2024, 8(12): 2811. [32] TONG Y X, LIU W, LI C M, et al. A metal/semiconductor contact induced Mott-Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustainable Energy Fuels, 2023, 7(1): 12. [33] QIAO D, YUN S, SUN M,et al. 1D/3D trepang-like N-modified carbon confined bimetal carbides and metal cobalt: Boosting electron transfer via dual Mott-Schottky heterojunctions triggered built-in electric fields for efficient hydrogen evolution and tri-iodide reduction. Applied Catalysis B: Environmental, 2023, 334: 122830. [34] 刘恩科, 朱秉升, 罗晋生. 半导体物理学. 北京: 电子工业出版社, 2017. [35] 张伶, 陈红梅, 魏子栋. 过渡金属氧化物催化析氧反应研究进展. 化工学报, 2020, 71(9): 3876. [36] SAHOO S, WICKRAMATHILAKA K Y, NJERI E,et al. A review on transition metal oxides in catalysis. Frontiers in Chemistry, 2024, 12: 1374878. [37] CHEN L, WANG H, TIAN W W, et al. Enabling internal electric field in heterogeneous nanosheets to significantly accelerate alkaline hydrogen electrocatalysis. Small, 2024, 20(18): 2307252. [38] LI R, PU Z, ZHOU R,et al. In situ controllable construction of Ni@NiO Schottky heterojunctions for electrocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2024, 12(46): 18849. [39] CHEN J, ZHENG J, HE W,et al. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Research, 2023, 16(4): 4603. [40] LIU M, YANG H, ZHOU Z, et al. Homologous heterostructures of Ni/NiFeO Mott-Schottky for alkaline water electrolysis. Journal of Materials Chemistry A, 2024, 12: 22210. [41] PENG L, SU L, YU X,et al. Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308: 121229. [42] 何倩倩, 王哲, 孟令佳, 等. 基于过渡金属二硫族化物析氢催化的研究进展. 高等学校化学学报, 2021, 42(2): 523. [43] SUN J, MENG X.Modulating the electronic properties of MoS2 nanosheets for electrochemical hydrogen production: a review.ACS Applied Nano Materials, 2021, 4(11): 11413. [44] JIANG L, XIA Y X, LI J J,et al. Engineering Mott-Schottky heterojunction Auδ+/1T-MoS1.76 electrocatalyst for boosting hydrogen evolution reaction. ACS Applied Energy Materials, 2023, 6(6): 3255. [45] SUN Z, LIN L, YUAN M W,et al. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy, 2022, 101: 107563. [46] WAZIR M B, DAUD M, SAFEER Set al. Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications. ACS Omega, 2022, 7(20): 16856. [47] YANG C M, LI X, LIANG Y C.Recent advances in molybdenum diselenide-based electrocatalysts: preparation and application in the hydrogen evolution reaction.Inorganic Chemistry Frontiers, 2023, 10(19): 5517. [48] YANG C, ZHOU L, WANG C,et al. Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Applied Catalysis B: Environmental, 2022, 304: 120993. [49] SONG T, ZHANG Z, ZHAO B,et al. Boosting catalytic performance of hierarchical Co/Co0.85Se microspheres via Mott-Schottky effect toward triiodide reduction and alkaline hydrogen evolution. Journal of Alloys and Compounds, 2022, 918: 165608. [50] REN X P, HU Q W, LING F,et al. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes towards superior hydrogen evolution. New Carbon Materials, 2023, 38(6): 1059. [51] SHI Y M, ZHANG B.Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction.Chemical Society Reviews, 2016, 45(6): 1529-1541. [52] 杨博, 吕功煊, 马建泰, 等. 过渡金属磷化物在催化反应中的稳定性. 化学进展, 2024, 36(7): 998. [53] LIU Z Y, FENG C, YANG S T,et al. 1D/3D dual carbon-supported Mott-Schottky-type Co-Co2P heterojunctions for pH-universal hydrogen evolution. Journal of Colloid and Interface Science, 2024, 657: 559. [54] WANG Z, WANG S.Constructing built-in electric field to accelerate the asymmetric local charge distribution for efficient alkaline overall water/seawater splitting.Applied Catalysis B: Environment and Energy, 2024, 352: 124002. [55] XUE Z H, SU H, YU Q Y,et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Advanced Energy Materials, 2017, 7(12): 1602355. [56] YAN L, CHEN Y H, XIE J C,et al. Optimizing heterointerface of NiCoP-Co/MXene with regulated charge distribution via built-in electric field for efficient overall water-splitting. Rare Metals, 2025, 44(2): 1067. [57] 秦睿, 王鹏彦, 林灿, 等. 过渡金属氮化物的活性起源、合成方法及电催化应用. 物理化学学报, 2021, 37(7): 41. [58] TANG S, ZHANG Z, XIANG J,et al. Recent advances in transition metal nitrides for hydrogen electrocatalysis in alkaline media: From catalyst design to application. Frontiers in Chemistry, 2022, 10: 1073175. [59] ZHOU Y M, CHU B X, SUN Z J, et al. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis. Applied Catalysis B: Environmental, 2023, 323: 122168. [60] HONG Z Z, XU Z L, WU Z T,et al. Construction of core-shell Co-NC@W2N Schottky heterojunctions for high-efficiency hydrogen evolution reaction. Applied Surface Science, 2023, 608: 155159. [61] RUI D, LI J, DU X,et al. VFe@Ni/Ni3N Mott-Schottky heterojunction induced electronic modulation for efficient alkaline water splitting. Journal of Electroanalytical Chemistry, 2023, 947: 117763. [62] SAKILA K, PAL S, ROY P,et al. Surface oxygen vacancy engineering of Cr-doped FeNi3/NiFe2O4 Mott-Schottky heterojunction as efficient electrocatalyst for high current density water oxidation. Journal of Alloys and Compounds, 2024, 977: 173393. [63] JIANG M M, XU J, CHEN Y J, et al. High-efficiency photo-assisted large current-density water splitting with Mott-Schottky heterojunctions. Angewandte Chemie International Edition, 2024, 64(3): e202415492. [64] HUANG Z, CHEN L, ZHANG H,et al. Manipulating interfacial charge redistribution in Mott-Schottky electrocatalyst for high-performance water-seawater splitting. Chemical Engineering Journal, 2024, 501: 157628. [65] REN Y, WANG C, DUAN W, et al. MoS2/Ni3S2 Schottky heterojunction regulating local charge distribution for efficient urea oxidation and hydrogen evolution. Journal of Colloid and Interface Science, 2022, 628: 446. [66] GU C, ZHOU G Y, YANG J,et al. NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chemical Engineering Journal, 2022, 443: 136321. [67] YUN S, GAO Z, YANG T,et al. Constructing NiSe2/MoSe2 Mott-Schottky heterojunctions onto N-doped brain coral-carbon spheres by phase separation strategies for advanced energy conversion applications. Advanced Functional Materials, 2023, 34(17): 2314226. [68] SUN Y, CAO W, GE X, et al. Built-in electric field induced interfacial charge distributions of Ni2P/NiSe2 heterojunction for urea-assisted hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10: 6674. [69] QIN M, CHEN L, ZHANG H,et al. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chemical Engineering Journal, 2023, 454: 14023. |