无机材料学报 ›› 2023, Vol. 38 ›› Issue (5): 489-502.DOI: 10.15541/jim20220716
牛嘉雪1(), 孙思2, 柳鹏飞1, 张晓东1,2, 穆晓宇1()
收稿日期:
2022-11-26
修回日期:
2023-01-04
出版日期:
2023-01-17
网络出版日期:
2023-01-17
通讯作者:
穆晓宇, 副研究员. E-mail: muxiaoyu@tju.edu.cn作者简介:
牛嘉雪(1999-), 女, 硕士研究生. E-mail: jiaxueniu@tju.edu.cn
基金资助:
NIU Jiaxue1(), SUN Si2, LIU Pengfei1, ZHANG Xiaodong1,2, MU Xiaoyu1()
Received:
2022-11-26
Revised:
2023-01-04
Published:
2023-01-17
Online:
2023-01-17
Contact:
MU Xiaoyu, associate professor. E-mail: muxiaoyu@tju.edu.cnAbout author:
NIU Jiaxue (1999-), female, Master candidate. E-mail: jiaxueniu@tju.edu.cn
Supported by:
摘要:
天然酶对维持生物体生命活动的正常运行具有重要意义, 但天然酶固有的缺点诸如不稳定、反应条件苛刻和提纯成本高等限制了其广泛应用。与天然酶相比, 具有高稳定性、低成本、便于结构调控与改性等优点的纳米酶吸引了科学家们的关注。纳米酶的类天然酶活性和选择性使其在生物医学、环境治理、工业生产等领域得到广泛应用。铜作为人体内必需元素和天然酶活性中心金属之一, 铜基纳米酶受到了人们广泛的关注和研究。本综述重点介绍了铜基纳米酶的分类, 包括铜纳米酶、氧化铜纳米酶、碲化铜纳米酶、铜单原子纳米酶和铜基金属有机框架材料纳米酶等, 并阐述了铜基纳米酶的酶学特性和催化机理, 总结了铜基纳米酶在生物传感、伤口愈合、急性肾损伤和肿瘤治疗等方面的应用, 最后对铜基纳米酶面临的挑战和未来的发展方向进行了总结和展望。
中图分类号:
牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502.
NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine[J]. Journal of Inorganic Materials, 2023, 38(5): 489-502.
图1 不同种类的铜基纳米酶[34,56,67⇓⇓-70]
Fig. 1 Different types of Cu-based nanozymes[34,56,67⇓⇓-70] (a) TEM image of Cu-Cys NPs[56]; (b) Schematic illustration of CuxO[68]; (c) TEM image of Cu2-xTe[67]; (d~f) Schematic illustration of (d) Cu-TCPP Dots[34], (e) Cu-HCF SSNEs[69] and (f) Cu-N4[70] NPs: Nano particles; Cu-TCPP: Cu-tetrakis(4-carboxyphenyl)porphyrin; Cu-HCF: Cu hexacyanoferrate; SSNEs: Single-site nanozymes
图2 铜基纳米酶的类抗氧化酶活性和清除ROS能力[68,70,86]
Fig. 2 Antioxidant-like enzyme and ROS scavenging activitivies of Cu-based nanozymes[68,70,86] (a-c) SOD-like (a), GPx-like (b), and POD-like (c) activities of CuxO[68]; (d-f) H2O2 (d), O2·- (e) and free radical (f) scavenging activity of Cu5.4O USNPs[86]; (g) UV-Vis spectra of the reaction solution in the presence of Cu SAs/CN, ascorbic acid and H2O2 over time; (h) Michaelis-Menton curves obtained with different concentrations of substrate AA under the fixed concentration of Cu SAs/CN and H2O2; (i) Quantification for APX-like activities of Cu SAs/CN[70] ROS: Reactive oxigen species; SOD: Superoxide dismutase; SA: Specific activities; AA: Ascorbic acid
图3 铜基纳米酶的类氧化酶活性和产生ROS能力[69,81]
Fig. 3 Oxidase-like and ROS generating activity of Cu-based nanozymes[69,81] (a) 1H NMR spectra of GSH at different points during reaction with SSNEs; (b, c) Kinetics of GSHOx-like (b) and POD-like (c) activities of SSNEs and SSNES-G; (d) ·OH generating activity of SSNEs and SSNES-G[69]; (e) 1O2 generating activity of Cu SAzyme with DPBF serving as the indicator; (f) 1O2, O2·- and ·OH generating activity of Cu SAzyme with TEMP, BMPO and DMPO as trapping agents in the presence of H2O2[81] GSH: Glutathione; SSNEs: Single-site nanozyme; GSHOx: Glutathione oxidase; POD: Peroxidase; DPBF: 1,3-diphenyl isobenzofuran; mM: mmol/L; μM: μmol/L
图4 铜基纳米酶在生物传感中的应用[94⇓⇓-97]
Fig. 4 Cu-based nanozymes for biosensing[94⇓⇓-97] (a) Schematic diagram of a paper sensor for H2O2 detection based on mesoporous CuO hollow sphere nanozymes; (b) Effects of different substrates H2O2, ascorbic acid, Cys, Gly, Pro, Ala, Glu, GSH, Glc, Na+, K+, Ca2+, Mg2+, and Mn2+ on the sensing performance of the paper sensor [94]; (c) UV-Vis spectra of the mixed reaction system with CuO/NiO NTs, TMB, H2O2 and different concentrations of isoniazid; (d) Dose response curve of sensing isoniazid[95]; (e) Schematic illustration of the three-enzyme system (ACC) containing acetylcholinesterase (AchE), choline oxidase (ChOx), and Cu-N-C single atom enzymes (SAzymes) for the organophosphorous pesticide (OP) detection; (f) Change of the absorbance at 652 nm of the ACC system with the addition of OP from 1 to 300 ng/mL; (g) Linear relationship between the inhibition rate (IR) of AchE and the logarithm of OP concentration[96]; (h) Schematic illustration of CuO NPs for ascorbic acid and ALP detection; (i) Emission spectra of different detection systems, with 1-4 indicating AAP-TA-CuO NPs, ALP-TA-CuO NPs, AAP-ALP-TA-CuO NPs, and TA-AA-CuO NPs, respectively; (j) Linear relationship between emission intensity and concentration of ascorbic acid; (k) Calibration plot for ALP determination with different concentrations[97] TMB: 3,3′,5,5′-tetramethylbenzidine; GSH: Glutathione; AChE: Acetylcholinesterase; OP: Organophosphorus pesticide; AAP: L-ascorbate-2-trisodium phosphate; TA: Terephthalic acid; ALP: Alkaline phosphatase; µM: µmol/L; mM: mmol/L
图5 铜基纳米酶在伤口愈合中的应用[86,98]
Fig. 5 Cu-based nanozymes for wound healing[86,98] (a) Schematic illustration of the Ni4Cu2 /F127 composite hydrogel dressing in wound healing; (b) Photographs of wounds with different treatments on days 0, 1, 3, 5, and 7 with scale bar representing 5 mm; (c-f) Statistical analysis of the cross-sectional length of wound (c), epidermal thickness (d), granulation tissue thickness (e), number of blood vessels (f) around wound on day 7[98]; (g) Schematic illustration of Cu5.4O USNPs with multiple enzyme-like activities and broad-spectrum ROS scavenging abilities; (h) Photographs of diabetic wounds at different time points with a 6-mm-diameter standard green disc as the size reference; (i) Schematic illustration of Cu5.4O USNPs in diabetic wounds healing; (j) Percentage of wound closure area at different time points; (k) Representative histological images and (l) quantification for the length of regenerated epidermis on day 15 post-surgery; (m) Representative histological images and (n) quantification for the granulation tissue on day 15 post-surgery[86] ROS: Reactive oxigen species; GSH: Glutathione; GSSG: Oxidized glutathione
图6 铜基纳米酶在急性肾损伤中的应用[34,86]
Fig. 6 Cu-based nanozymes for AKIg[34,86] (a) Schematic illustration of the establishment of AKI and Cu5.4O USNPs for the treatment[86]; (b) Survival curves and the levels of (c) CRE and (d) BUN in different groups at 24 h after treatments[86]; (e, f) The levels of (e) kidney injury molecules-1 (KIM-1) and (f) heme oxygenase-1 (HO-1) in kidney of different groups[86]; (g) Schematic illustration of CTMDs in AKI induced by endotoxemia[34]; (h) Survival curves, (i) levels of oxidative stress containing lactate dehydrogenase (LDH), TNF-α, IL-6, and (j) levels of CREA and BUN[34]; (k) H&E images of different groups[34] PBS: Phosphate buffer solution; AKI: Acute kidney injury; CRE: Creatinine; BUN: Blood urea nitrogen; LPS: Lipopolysaccharide; CTMDs: Cu-tetrakis(4-carboxyphenyl)porphyrin) MOF dots
图7 铜基纳米酶在肿瘤治疗中的应用[56,106]
Fig. 7 Cu-based nanozymes for tumor therapy[56,106] (a) Schematic illustration of Cu-Cys NPs preparation and chemodynamic therapy for tumors; (b, c) Changes in body weight (b) and tumor size (c) of MCF-7R tumor-bearing mice with different treatments; (d) Photographs of tumor in different groups after 40 d of treatment; (e) Average tumor masses excised from MCF-7R tumor-bearing mice from each group[56]; (f) Schematic illustration of the synergistic anticancer mechanism of nHACI based on PDT and PD-1 blockers; (g) Average tumor volume, (h) photographs and (i) weights of tumor in different groups; (j) Survival curves of B16F10 tumor-bearing mice in different groups[106] GSH: Glutathione; GSSG: Oxidized glutathione; ROS: Reactive oxigen species; DOX: Doxorubicin; HHA: Hydrazided hyaluronan
[1] |
GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9): 577.
DOI PMID |
[2] |
DONG H, DU W, DONG J, et al. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun., 2022, 13(1): 5365.
DOI |
[3] | XU B, LI S, ZHENG L, et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater., 2022, 34(15): 2107088. |
[4] |
LIU J, WANG A, LIU S, et al. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem. Int. Ed., 2021, 60(48): 25328.
DOI URL |
[5] |
WANG X, ZHONG X, BAI L, et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc., 2020, 142(14): 6527.
DOI URL |
[6] |
VERNEKAR A, SINHA D, SRIVASTAVA S, et al. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun., 2014, 5(1): 5301.
DOI PMID |
[7] |
GHOSH S, ROY P, KARMODAK N, et al. Nanoisozymes: crystal- facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed., 2018, 130(17): 4600.
DOI URL |
[8] |
HUANG Y, LIU Z, LIU C, et al. Self-assembly of multi- nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed., 2016, 128(23): 6758.
DOI URL |
[9] |
SINGH N, SAVANUR M, SRIVASTAVA S, et al. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson's disease model. Angew. Chem. Int. Ed., 2017, 129(45): 14455.
DOI URL |
[10] |
YAO J, CHENG Y, ZHOU M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci., 2018, 9(11): 2927.
DOI URL |
[11] |
YAN R, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano, 2019, 13(10): 11552.
DOI PMID |
[12] |
ZHANG S, LIU Y, SUN S, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11(6): 2806.
DOI URL |
[13] |
MU J, ZHANG L, ZHAO M, et al. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl. Mater. Interf., 2014, 6(10): 7090.
DOI URL |
[14] |
DONG J, SONG L, YIN J, et al. Co3O4 nanoparticles with multi- enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interf., 2014, 6(3): 1959.
DOI URL |
[15] |
CHEN W, CHEN J, FENG Y, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst, 2012, 137(7): 1706.
DOI PMID |
[16] |
HONG L, LIU A, LI G, et al. Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens. Bioelectron., 2013, 43: 1.
DOI PMID |
[17] |
LIN Y, REN J, QU X. Nano-gold as artificial enzymes: hidden talents. Adv. Mater., 2014, 26(25): 4200.
DOI URL |
[18] |
TAO Y, JU E, REN J, et al. Bifunctionalized mesoporous silica- supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater., 2015, 27(6): 1097.
DOI URL |
[19] |
ZHANG Y, SUN S, LIU H, et al. Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. J. Nanobiotechnology, 2021, 19(1): 319.
DOI |
[20] |
JIAO M, MU X, SUN S, et al. Establishing bilateral modulation of radiation induced redox damage via biocatalytic single atom engineering at Au clusters. Chem. Eng. J., 2022, 445: 136793.
DOI URL |
[21] |
HAN L, LI C, ZHANG T, et al. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-Like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interf., 2015, 7(26): 14463.
DOI URL |
[22] |
WANG D, ZHANG B, DING H, et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today, 2021, 40: 101243.
DOI URL |
[23] |
SUN S, LIU H, XIN Q, et al. Atomic engineering of clusterzyme for relieving zcute neuroinflammation through lattice expansion. Nano Lett., 2021, 21(6): 2562.
DOI URL |
[24] |
WANG J, MU X, LI Y, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation- induced ROS via surface-mediated bond breaking. Small, 2018, 14(13): 1703736.
DOI URL |
[25] |
JIN L, MENG Z, ZHANG Y, et al. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces, 2017, 9(11): 10027.
DOI URL |
[26] |
SUN D, PANG X, CHENG Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug- resistant bacterial infection. ACS Nano, 2020, 14(2): 2063.
DOI URL |
[27] |
FANG G, LI W, SHEN X, et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun., 2018, 9(1): 129.
DOI PMID |
[28] |
GE C, FANG G, SHEN X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano, 2016, 10(11): 10436.
DOI URL |
[29] |
MU X, WANG J, LI Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano, 2019, 13(2): 1870.
DOI PMID |
[30] | LI S, XU B, LU M, et al. Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv. Mater., 2022, 34(32): 2202609. |
[31] |
FENG D, GU Z, LI J, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed., 2012, 51(41): 10307.
DOI PMID |
[32] |
ZHAO M, WANG Y, MA Q, et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater., 2015, 27(45): 7372.
DOI |
[33] |
WANG J, HUANG R, QI W, et al. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase- like activity for the degradation and detection of phenolic compounds. Chem. Eng. J., 2022, 434: 134677.
DOI URL |
[34] | ZHANG L, ZHANG Y, WANG Z, et al. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horizons, 2019, 6(8): 1682. |
[35] |
ZHANG X, HUANG X, WANG Z, et al. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem. Eng. J., 2022, 429: 132243.
DOI URL |
[36] |
WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42(14): 6060.
DOI PMID |
[37] |
WANG H, WAN K, SHI X. Recent advances in nanozyme research. Adv. Mater., 2019, 31(45): 1805368.
DOI URL |
[38] |
CHEN K, SUN S, WANG J, et al. Catalytic nanozymes for central nervous system disease. Coord. Chem. Rev., 2021, 432: 213751.
DOI URL |
[39] |
PEI J, ZHAO R, MU X, et al. Single-atom nanozymes for biological applications. Biomater. Sci., 2020, 8(23): 6428.
DOI URL |
[40] |
DONG H, FAN Y, ZHANG W, et al. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem., 2019, 30(5): 1273.
DOI URL |
[41] |
NIU K, ZUO Z, LU X, et al. Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability. Biosens. Bioelectron., 2022, 205: 114111.
DOI URL |
[42] |
XIANG H, YOU C, LIU W, et al. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials, 2021, 277: 121071.
DOI URL |
[43] | XU W, QIAN J, HOU G, et al. A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms. Adv. Funct. Mater., 2022, 32(40): 2205013. |
[44] |
CHEN W, CHEN J, LIU A, et al. Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem, 2011, 3(7): 1151.
DOI URL |
[45] |
DUTTA A, DAS S, SAMANTA S, et al. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta, 2013, 107: 361.
DOI PMID |
[46] |
YANG Z, CAO Y, LI J, et al. Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay. ACS Appl. Mater. Interfaces, 2016, 8(19): 12031.
DOI URL |
[47] |
TAN H, LI Q, ZHOU Z, et al. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta, 2015, 856: 90.
DOI PMID |
[48] |
ŠULCE A, BULKE F, SCHOWALTER M, et al. Reactive oxygen species (ROS) formation ability and stability of small copper (Cu) nanoparticles (NPs). RSC Adv., 2016, 6(80): 76980.
DOI URL |
[49] |
THIYAM D, NONGMEIKAPAM A, NANDEIBAM A, et al. Biosynthesized quantum dot size Cu nanocatalyst: peroxidase mimetic and aqueous phase conversion of fructose. ChemistrySelect, 2018, 3(43): 12183.
DOI URL |
[50] |
PENG Y, REN Y, ZHU H, et al. Ultrasmall copper nanoclusters with multi-enzyme activities. RSC Adv., 2021, 11(24): 14517.
DOI PMID |
[51] |
HUANG L, CHEN J, GAN L, et al. Single-atom nanozymes. Sci. Adv., 2019, 5(5): eaav5490.
DOI URL |
[52] | LU X, GAO S, LIN H, et al. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater., 2020, 32(36): 2002246. |
[53] |
LI Y, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198.
DOI URL |
[54] |
ROSENBAUM J, VERSACE D, ABBAD S, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants. Biomater. Sci., 2017, 5(3): 455.
DOI URL |
[55] |
AKHAVAN O, GHADERI E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat Technol., 2010, 205(1): 219.
DOI URL |
[56] |
MA B, WANG S, LIU F, et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(2): 849.
DOI URL |
[57] |
CZESCIK J, ZAMOLO S, DARBRE T, et al. A gold nanoparticle nanonuclease relying on a Zn (II) mononuclear complex. Angew. Chem. Int. Ed., 2021, 133(3): 1443.
DOI URL |
[58] |
LIU Y, NIE N, TANG H, et al. Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes. ACS Appl. Mater. Interf., 2021, 13(10): 11631.
DOI URL |
[59] |
WANG J, HUANG R, QI W, et al. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B, 2019, 254: 452.
DOI URL |
[60] |
NASARUDDIN R R, CHEN T, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord. Chem. Rev., 2018, 368: 60.
DOI URL |
[61] |
CHEN T, YAO Q, NASARUDDIN R R, et al. Electrospray ionization mass spectrometry: a powerful platform for noble-metal nanocluster analysis. Angew. Chem. Int. Ed., 2019, 58(35): 11967.
DOI PMID |
[62] |
LIU C, CAI Y, WANG J, et al. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione eensing and fluorimetric ascorbic acid sensing. ACS Appl. Mater. Interf., 2020, 12(38): 42521.
DOI URL |
[63] |
LIU H, LI Y, SUN S, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single- atom substitutions. Nat. Commun., 2021, 12(1): 114.
DOI |
[64] |
MENG F, PENG M, CHEN Y, et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B, 2022, 301: 120826.
DOI URL |
[65] |
LIN L, HUANG T, SONG J, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(25): 9937.
DOI URL |
[66] |
LI F, CHANG Q, LI N, et al. Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity. Chem. Eng. J., 2020, 394: 125045.
DOI URL |
[67] |
WEN M, OUYANG J, WEI C, et al. Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed., 2019, 58(48): 17425.
DOI PMID |
[68] |
HAO C, QU A, XU L, et al. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc., 2019, 141(2): 1091.
DOI URL |
[69] |
WANG D, WU H, WANG C, et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem. Int. Ed., 2021, 133(6): 3038.
DOI URL |
[70] |
CHEN Y, ZOU H, YAN B, et al. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci., 2022, 9(5): 2103977.
DOI URL |
[71] |
ZHANG L, LIU Z, DENG Q, et al. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed., 2021, 60(7): 3469.
DOI PMID |
[72] |
ZHANG Y, WANG F, LIU C, et al. Nanozyme decorated metal- organic frameworks for enhanced photodynamic therapy. ACS Nano, 2018, 12(1): 651.
DOI URL |
[73] | PAN X, WU N, TIAN S, et al. Inhalable MOF-derived nanoparticles for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater., 2022, 32(25): 2112145. |
[74] |
WANG C, CAO F, RUAN Y, et al. Specific generation of singlet oxygen through the Russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed., 2019, 131(29): 9951.
DOI URL |
[75] |
WANG Z, ZHANG R, YAN X, et al. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater. Today, 2020, 41: 81.
DOI URL |
[76] | WU T, HUANG S, YANG H, et al. Bimetal biomimetic engineering utilizing metal-organic frameworks for superoxide dismutase mimic. ACS Mater. Lett., 2022, 4(4): 751. |
[77] |
JI S, JIANG B, HAO H, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal., 2021, 4(5): 407.
DOI |
[78] |
XING Y, WANG L, WANG L, et al. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater., 2022, 32(16): 2111171.
DOI URL |
[79] |
ZHANG S, LI Y, SUN S, et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun., 2022, 13(1): 4744.
DOI PMID |
[80] |
WANG X, SHI Q, ZHA Z, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater., 2021, 6(12): 4389.
DOI PMID |
[81] | CHANG M, HOU Z, WANG M, et al. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed., 2022, 61(50): e202209245. |
[82] |
ZHANG W, HU S, YIN J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc., 2016, 138(18): 5860.
DOI PMID |
[83] |
LI L, LI S, WANG S, et al. Antioxidant and anti-glycated TAT-modified platinum nanoclusters as eye drops for non-invasive and painless relief of diabetic cataract in rats. Chem. Eng. J., 2020, 398: 125436.
DOI URL |
[84] |
WU H, XIA F, ZHANG L, et al. A ROS-sensitive nanozyme- augmented photoacoustic nanoprobe for early diagnosis and therapy of acute liver failure. Adv. Mater., 2022, 34(7): 2108348.
DOI URL |
[85] |
LIU Y, MAO Y, XU E, et al. Nanozyme scavenging ROS for prevention of pathologic, α-synuclein transmission in Parkinson’s disease. Nano Today, 2021, 36: 101027.
DOI URL |
[86] |
IU T, XIAO B, XIANG F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun., 2020, 11(1): 2788.
DOI PMID |
[87] |
WU H, LIU L, SONG L, et al. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano, 2019, 13(12): 14013.
DOI PMID |
[88] |
PENG W, LI S, ZHANG Y, et al. A double DNAzyme-loaded MnO2 versatile nanodevice for precise cancer diagnosis and self- sufficient synergistic gene therapy. Chem. Eng. J., 2022, 450: 138138.
DOI URL |
[89] |
SANG Y, CAO F, LI W, et al. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc., 2020, 142(11): 5177.
DOI URL |
[90] |
FENG L, LIU B, XIE R, et al. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater., 2021, 31(5): 2006216.
DOI URL |
[91] |
WANG T, DONG D, CHEN T, et al. Acidity-responsive cascade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J., 2022, 446: 137172.
DOI URL |
[92] |
XI J, WEI G, AN L, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett., 2019, 19(11): 7645.
DOI PMID |
[93] |
LI S, LIU X, CHAI H, et al. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Analyt. Chem., 2018, 105: 391.
DOI URL |
[94] |
CHENG D, QIN J, FENG Y, et al. Synthesis of mesoporous CuO hollow sphere nanozyme for paper-based hydrogen peroxide sensor. Biosensors, 2021, 11(8): 258.
DOI URL |
[95] |
ZHU W, CHENG Y, WANG C, et al. Fabrication of a tubular CuO/NiO biomimetic nanozyme with synergistically promoted peroxidase-like performance for isoniazid sensing. Inorg. Chem., 2022, 61(41): 16239.
DOI URL |
[96] |
WU Y, WU J, JIAO L, et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem., 2020, 92(4): 3373.
DOI PMID |
[97] | HE S, BALASUBRAMANIAN P, HU A, et al. One-pot cascade catalysis at neutral pH driven by CuO tandem nanozyme for ascorbic acid and alkaline phosphatase detection. Sens. Actuators B Chem., 2020, 321: 128511. |
[98] |
JIN X, ZHANG W, SHAN J, et al. Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces, 2022, 14(45): 50677.
DOI URL |
[99] |
XU P, HUANG W, YANG J, et al. Copper-rich multifunctional Prussian blue nanozymes for infected wound healing. Int. J. Biol. Macromol., 2022, 227: 1258.
DOI PMID |
[100] |
PENG Y, HE D, GE X, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater., 2021, 6(10): 3109.
DOI PMID |
[101] |
HOU G, XU W, GUO M, et al. Full-active Cu2O/drug core/shell nanoparticles based on “grafting from” drug coordination polymerization combined with PD-1 blockade for efficient cancer therapy. Chem. Eng. J., 2022, 441: 135993.
DOI URL |
[102] |
FU L, WAN Y, QI C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater., 2021, 33(7): 2006892.
DOI URL |
[103] |
HUA Y, HUANG J, SHAO Z, et al. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater., 2022, 34(31): 2203734.
DOI URL |
[104] |
HU B, XIAO X, CHEN P, et al. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities. Biomaterials, 2022, 290: 121811.
DOI URL |
[105] |
ZHU D, LING R, CHEN H, et al. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res., 2022, 15(8): 7320.
DOI |
[106] |
HOU G, QIAN J, GUO M, et al. Copper coordinated nanozyme- assisted photodynamic therapy for potentiating PD-1 blockade through amplifying oxidative stress. Chem. Eng. J., 2022, 435: 134778.
DOI URL |
[107] | MENG Y, CHEN Y, ZHU J, et al. Polarity control of DNA adsorption enabling the surface functionalization of CuO nanozymes for targeted tumor therapy. Mater. Horizons, 2021, 8(3): 972. |
[108] |
LIU H, HAN Y, WANG T, et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52): 21730.
DOI URL |
[109] |
FENG Q, ZHANG Y, ZHANG W, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater., 2016, 38: 129.
DOI PMID |
[110] |
DENG X, LI K, CAI X, et al. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater., 2017, 29(36): 1701266.
DOI URL |
[111] |
WU W, YU L, JIANG Q, et al. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to- toxicity transition. J. Am. Chem. Soc., 2019, 141(29): 11531.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||