无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 691-696.DOI: 10.15541/jim20210491 CSTR: 32189.14.10.15541/jim20210491
• 研究快报 • 上一篇
收稿日期:
2021-08-05
修回日期:
2021-08-20
出版日期:
2022-06-20
网络出版日期:
2021-11-01
通讯作者:
孙宜阳, 研究员. E-mail: yysun@mail.sic.ac.cn作者简介:
林啊鸣(1996-), 女, 硕士研究生. E-mail: linaming@student.sic.ac.cn
LIN Aming1,2(), SUN Yiyang1,2(
)
Received:
2021-08-05
Revised:
2021-08-20
Published:
2022-06-20
Online:
2021-11-01
Contact:
SUN Yiyang, professor. E-mail: yysun@mail.sic.ac.cnAbout author:
LIN Aming (1996–), female, Master candidate. E-mail: linaming@student.sic.ac.cn
Supported by:
摘要:
Cs2SnI6是一种稳定且环保的卤化物钙钛矿材料, 在光伏和光电应用方面具有巨大潜力。虽然表面性质对于光电器件的制备至关重要, 但目前尚没有对该材料开展相关的理论研究。利用密度泛函理论计算结合SCAN+rVV10泛函, 本工作研究了Cs2SnI6的(001)、(011)和(111)表面以揭示其热力学稳定性。针对每个表面, 研究考虑了具有不同截断的模型, 包括两个沿(001)方向(分别为CsI2和SnI4终止的表面), 两个沿(011)方向(分别为I4和Cs2SnI2 终止的表面)和三个沿(111)方向(分别为非化学计量比的CsI3、Sn和满足化学计量比的CsI3终止的表面)。由于大多数表面模型是非化学计量比的, 它们的相对稳定性取决于实验制备条件, 因此需要考虑组成元素的化学势。通过确定允许的化学势区域, 研究分析了这些表面的热力学稳定性。结果表明, (001)和 (011)面的表面能会受到化学势的影响, 而满足化学计量比的CsI3终止的(111)表面不受化学势影响, 是Cs2SnI6最稳定的表面。该结果说明, 近期实验普遍观察到的暴露(111)面的晶体是受热力学稳定性驱动形成的。
中图分类号:
林啊鸣, 孙宜阳. Cs2SnI6低指数晶面稳定性的第一性原理计算研究[J]. 无机材料学报, 2022, 37(6): 691-696.
LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations[J]. Journal of Inorganic Materials, 2022, 37(6): 691-696.
Fig. 2 Seven supercell models of Cs2SnI6 surfaces (a) For (001) surface: CsI2-terminated and SnI4-terminated slabs; (b) For (011) surface: I4-terminated and Cs2SnI2-terminated slabs; (c) For (111) surface: non-stoichiometric Sn-terminated, CsI3-terminated and stoichiometric CsI3-terminated slabs
Fig. 3 Calculated total cleavage, relaxation and surface energies of two complementary non-stoichiometric terminations in (001), (011) and (111) orientations, which are compared with the cleavage, relaxation and surface energies of the stoichiometric CsI3-terminated (111) surface
Fig. 4 Illustration of the accessible chemical potential region for Cs2SnI6 Constraints imposed by the formation of competing secondary phases resulting in the allowed region shaded in green
Fig. 5 Stability of low-index surfaces of Cs2SnI6 as a function of chemical potentials (a) Analysis of stability of the two terminations of Cs2SnI6 (001) surface with respect to the allowed region for maintaining equilibrium with the primary phase Cs2SnI6. The orange and blue regions indicate the stable region for CsI2- and SnI4-terminations, respectively; (b) Similar to (a) for the Cs2SnI6 (011) surface. The orange and blue regions are for the I4- and Cs2SnI2-terminations, respectively; (c) Similar to (a) for the Cs2SnI6 (111) surface. The orange and blue regions are for the Sn- and stoichiometric CsI3-terminations, respectively; (d) Surface energies of the seven surface models of Cs2SnI6 as a function of the chemical potentials colorful figures are available on website
[1] |
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron- hole diffusion lengths exceeding trihalide perovskite absorber. Science, 2013, 342(6156): 341-344.
DOI URL |
[2] |
HEO J H, IM S H, NOH J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7: 486-491.
DOI URL |
[3] |
SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5: 5784.
DOI URL |
[4] |
XING G, MATHEWS N, LIM S S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344-347.
DOI URL |
[5] |
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light- emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9: 687-692.
DOI URL |
[6] |
GAO L, ZENG K, GUO J, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446-7454.
DOI URL |
[7] |
HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 2014, 8: 489-494.
DOI URL |
[8] |
STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019-9038.
DOI URL |
[9] |
NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic- inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7(9): 3061-3068.
DOI URL |
[10] |
CHUNG I, LEE B, HE J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485: 486-489.
DOI URL |
[11] |
KUMAR M H, DHARANI S, LEONG W L, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122-7127.
DOI URL |
[12] |
MARSHALL K P, WALKER M, WALTON R I, et al. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178.
DOI URL |
[13] |
CHUNG I, SONG J H, IM J, et al. CsSnI3: semiconductor or metal? high electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions. Journal of the American Chemical Society, 2012, 134(20): 8579-8587.
DOI URL |
[14] |
LEE B, STOUMPOS C C, ZHOU N, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. Journal of the American Chemical Society, 2014, 136(43): 15379-15385.
DOI URL |
[15] |
SAPAROV B, SUN J P, MENG W, et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315-2322.
DOI URL |
[16] |
QIU X, CAO B, YUAN S, et al. From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159: 227-234.
DOI URL |
[17] |
WANG X D, HUANG Y H, LIAO J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141(34): 13434-13441.
DOI URL |
[18] |
LIU F, DING C, ZHANG Y, et al. Colloidal synthesis of air-stable alloyed CsSn1-xPbxI3 perovskite nanocrystals for use in solar cells. Journal of the American Chemical Society, 2017, 139(46): 16708-16719.
DOI URL |
[19] |
DOLZHNIKOV D S, WANG C, XU Y, et al. Ligand-free, quantum- confined Cs2SnI6 perovskite nanocrystals. Chemistry of Materials, 2017, 29(18): 7901-7907.
DOI URL |
[20] |
MAUGHAN A E, GANOSE A M, BORDELON M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. Journal of the American Chemical Society, 2016, 138(27): 8453-8464.
DOI URL |
[21] |
XIAO Z, ZHOU Y, HOSONO H, et al. Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. Physical Chemistry Chemical Physics, 2015, 17(29): 18900-18903.
DOI URL |
[22] |
KAPIL G, OHTA T, KOYANAGI T, et al. Investigation of interfacial charge transfer in solution processed Cs2SnI6 thin films. Journal of Physical Chemistry C, 2017, 121(24): 13092-13100.
DOI URL |
[23] | SHIN H O, KIM B M, JANG T, et al. Surface state-mediated charge transfer of Cs2SnI6 and its application in dye-sensitized solar cells. Advanced Energy Materials, 2019, 9(3): 1803243. |
[24] | XU Y, LI S, ZHANG Z, et al. Ligand-mediated synthesis of colloidal Cs2SnI6 three-dimensional nanocrystals and two-dimensional nanoplatelets. Nanotechnology, 2019, 30(29): 295601. |
[25] | ZHU W, SHEN J, LI M, et al. Kinetically controlled growth of sub-millimeter 2D Cs2SnI6 nanosheets at the liquid-liquid interface. Small, 2021, 17(4): 2006279. |
[26] |
LUO R, ZHANG S, ZHAO S, et al. Ultrasmall blueshift of near-infrared fluorescence in phase-stable Cs2SnI6 thin films. Physical Review Applied, 2020, 14(1): 014048.
DOI URL |
[27] |
ZHOU P, CHEN H, CHAO Y, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12: 4412.
DOI URL |
[28] |
ULLAH S, ULLAH S, WANG J, et al. Investigation of air-stable Cs2SnI6 films prepared by the modified two-step process for lead-free perovskite solar cells. Semiconductor Science and Technology, 2020, 35: 125027.
DOI URL |
[29] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186.
DOI URL |
[30] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3): 1758-1775.
DOI URL |
[31] |
PENG H, YANG Z H, PERDEW J P, et al. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Physical Review X, 2016, 6(4): 041005.
DOI URL |
[32] |
XIAO Z, LEI H, ZHANG X, et al. Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6. Bulletin of the Chemical Society of Japan, 2015, 88(9): 1250-1255.
DOI URL |
[33] |
ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Physical Review Letters, 1991, 67(17): 2339-2342.
DOI URL |
[34] |
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to III-nitrides. Journal of Applied Physics, 2004, 95(8): 3851-3879.
DOI URL |
[35] |
CHEN H, DING Y H, YU H T, et al. First-principles investigation of the electronic properties and stabilities of the LaAlO3 (001) and (110) (1 × 1) polar terminations. Journal of Physical Chemistry C, 2015, 119(17): 9364-9374.
DOI URL |
[36] |
HUANG X, PAUDEL T R, DOWBEN P A, et al. Electronic structure and stability of the CH3NH3PbBr3 (001) surface. Physical Review B, 2016, 94(19): 195309.
DOI URL |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[3] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[4] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. |
[5] | 潘泽晟, 游雅萍, 郑雅, 陈海杰, 王连军, 江莞. 面向紫光激发白光LED用荧光材料的耐候性[J]. 无机材料学报, 2025, 40(3): 314-322. |
[6] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. |
[7] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[8] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[9] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[10] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[11] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[12] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[13] | 刘锁兰, 栾福园, 吴子华, 寿春晖, 谢华清, 杨松旺. 原位生长钙钛矿太阳能电池共形氧化锡薄膜[J]. 无机材料学报, 2024, 39(12): 1397-1403. |
[14] | 王煜, 熊浩, 黄孝坤, 江琳沁, 吴波, 黎健生, 杨爱军. 低剂量异辛酸亚锡调控两步法制备Sn-Pb混合钙钛矿太阳能电池[J]. 无机材料学报, 2024, 39(12): 1339-1347. |
[15] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||