无机材料学报 ›› 2022, Vol. 37 ›› Issue (3): 278-288.DOI: 10.15541/jim20210599 CSTR: 32189.14.10.15541/jim20210599

所属专题: 2022年度中国知网高下载论文

• 综述 • 上一篇    下一篇

增材制造压电陶瓷的现状与展望

刘凯1,2(), 孙策2, 史玉升3, 胡佳明2, 张庆庆2, 孙云飞2, 章嵩4, 涂溶4, 闫春泽3, 陈张伟5, 黄尚宇2, 孙华君1()   

  1. 1.武汉理工大学 硅酸盐建筑材料国家重点实验室, 武汉 430070
    2.武汉理工大学 材料科学与工程学院, 武汉 430070
    3.华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
    4.武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070
    5.深圳大学 增材制造研究所, 深圳 518060
  • 收稿日期:2021-09-28 修回日期:2021-11-21 出版日期:2022-03-20 网络出版日期:2021-12-24
  • 通讯作者: 孙华君, 教授. E-mail: huajunsun@whut.edu.cn
  • 作者简介:刘 凯(1987-), 男, 副教授. E-mail: victor_liu@whut.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB3703100);国家自然科学基金(51672198);国家自然科学基金(U1806221);山东半岛国家自主创新示范区建设发展项目(2017-41-1);山东半岛国家自主创新示范区建设发展项目(2017-41-3);山东半岛国家自主创新示范区建设发展项目(2018ZCQZB01);山东半岛国家自主创新示范区建设发展项目(2019ZCQZB03);中央引导地方科技发展专项资金(2060503);山东省重点研发项目(2019GGX102011)

Current Status and Prospect of Additive Manufacturing Piezoceramics

LIU Kai1,2(), SUN Ce2, SHI Yusheng3, HU Jiaming2, ZHANG Qingqing2, SUN Yunfei2, ZHANG Song4, TU Rong4, YAN Chunze3, CHEN Zhangwei5, HUANG Shangyu2, SUN Huajun1()   

  1. 1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
    2. College of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
    3. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
    4. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
    5. Additive Manufacturing Institute, Shenzhen University, Shenzhen 518060, China
  • Received:2021-09-28 Revised:2021-11-21 Published:2022-03-20 Online:2021-12-24
  • Contact: SUN Huajun, professor. E-mail: huajunsun@whut.edu.cn
  • About author:LIU Kai (1987-), male, associate professor. E-mail: victor_liu@whut.edu.cn
  • Supported by:
    National Key Research and Development Plan(2021YFB3703100);National Natural Science Foundation of China(51672198);National Natural Science Foundation of China(U1806221);Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province(2017-41-1);Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province(2017-41-3);Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province(2018ZCQZB01);Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province(2019ZCQZB03);Special Funds for Guiding Local Scientific and Technological Development by the Central Government(2060503);Key Research & Design Program of Shandong Province(2019GGX102011)

摘要:

压电陶瓷作为一类重要的功能陶瓷材料, 具备高强度、高硬度、耐腐蚀等优点, 可实现机械能和电能间的相互转换, 常被用于制备传感器、驱动器、电容器等压电器件, 在海洋探测、生物医疗、电子通讯等高端装备中发挥着重要作用。针对高端技术领域对压电功能器件智能化、集成化、轻量化的发展需求, 压电陶瓷的外形和结构越来越复杂。注浆、注射、模压、切割等传统的压电陶瓷制造工艺, 大多需借助模具或刀具完成, 很难甚至无法制造具有中空、悬垂等复杂结构的压电陶瓷, 制约了压电功能器件的进一步发展。增材制造技术基于逐层累加原理可实现任意复杂结构快速定制, 具有成型效率高、无需模具等优点, 可满足个性化、整体化、复杂化制造需求, 近年来受到国内外压电陶瓷领域研究人员的广泛关注。本文从粉体、浆料、块材三种原材料形态角度, 综述了当前增材制造压电陶瓷的主要工艺种类及发展现状, 综合对比了各种工艺成型特点; 介绍了增材制造压电陶瓷在不同领域的应用进展; 最后, 总结和展望了增材制造压电陶瓷所面临的挑战和未来可能的发展趋势。

关键词: 压电陶瓷, 增材制造, 工艺种类, 结构, 应用, 综述

Abstract:

As an important functional material, piezoelectric ceramics not only have the characteristics of high strength, high hardness, corrosion resistance, etc., but also can realize the mutual conversion between mechanical energy and electrical energy. Piezoelectric ceramics are widely used in sensors, drivers, capacitors and other piezoelectric parts, playing an important role in high-end equipment such as marine exploration, biomedicine, and electronic communications. The development requirements of intelligent, integrated, and lightweight piezoelectric functional devices in advanced technology fields have pushed their shape more and more complex. However, traditional fabricating processes, such as slip casting, injection molding, mould pressing, and machining, depend on molds or grinding tools. It is difficult to design and fabricate complex shape piezoelectric ceramics, especially with hollows and overhangs. Additive manufacturing technology can rapidly fabricate any complex structure parts based on the layer-by-layer fabricating principle with advantages of high molding efficiency and without molds. It can meet the needs of individualized, integration and complex manufacturing. In recent years, it has received extensive attention from researchers in the field of piezoelectric ceramics in both domestic and abroad. This article summarizes the main types of current additive manufacturing piezoelectric ceramics and their development status from the perspective of three raw material forms: powder, slurry and bulk materials, then comprehensively compares the characteristics of various processes. Application of additive manufacturing of piezoelectric ceramics in different fields has also been introduced. Finally, the challenges faced by additive manufacturing piezoelectric ceramics and the possible future development trends are summarized and prospected.

Key words: piezoceramic, additive manufacturing, process types, structure, application, review

中图分类号: