无机材料学报 ›› 2020, Vol. 35 ›› Issue (2): 243-249.DOI: 10.15541/jim20190118 CSTR: 32189.14.10.15541/jim20190118
吴思1,2,梅雷2,胡孔球2,柴之芳2,3,聂长明1(),石伟群2(
)
收稿日期:
2019-03-21
修回日期:
2019-04-27
出版日期:
2020-02-20
网络出版日期:
2019-09-20
作者简介:
吴 思(1993-), 女, 硕士研究生. E-mail: wusi@ihep.ac.cn
WU Si1,2,MEI Lei2,HU Kong-Qiu2,CHAI Zhi-Fang2,3,NIE Chang-Ming1(),SHI Wei-Qun2(
)
Received:
2019-03-21
Revised:
2019-04-27
Published:
2020-02-20
Online:
2019-09-20
Supported by:
摘要:
本工作报道了一种含新型八核铀酰(U8)团簇单元([(UO2)8O4(μ3-OH)2(μ2-OH)2] 4+)的草酸铀酰配合物, 该化合物中, U型有机配体链可以增强铀酰之间的交联度, 具有稳定多核铀酰团簇的作用。通过与另外两种含单核和双核的铀酰配位化合物比较, 发现八核铀酰团簇单元的形成是一个pH调控的过程。理化性质分析显示, 荧光、红外、拉曼的信号峰都出现了不同程度的重叠和宽化, 表明八个铀酰离子具有较高的相似度, 这与此多核铀酰团簇的近平面分子构型密切相关。
中图分类号:
吴思,梅雷,胡孔球,柴之芳,聂长明,石伟群. pH调控合成U型配体介导的八核铀酰草酸网络[J]. 无机材料学报, 2020, 35(2): 243-249.
WU Si,MEI Lei,HU Kong-Qiu,CHAI Zhi-Fang,NIE Chang-Ming,SHI Wei-Qun. pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers[J]. Journal of Inorganic Materials, 2020, 35(2): 243-249.
Fig. 1 Octa-nuclear uranyl-oxalate network reinforced by U-shaped zwitterionic dicarboxylate linkers (a) two-dimensional coordination network; (b) octa-nuclear uranyl (U8) motif, [(UO2)8O4(μ3-OH)2(μ2-OH)2]4+; (c) U-shaped linker in a space- filling mode overlapped with its molecular structure; (d) U-shaped linker in a stick mode Color codes: uranyl polyhedra in yellow; U-shaped linkers in dark or blue
Fig. 2 Crystal structure of compound 1 (a) ORTEP view of compound 1 with the 30% probability level for thermal ellipsoids; (b) octa-nuclear uranyl (U8) motif in compound 1 showing detailed coordination spheres of all uranyl centers Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray
Fig. 3 Crystal structure of compound 2 (a) ORTEP view of compound 2 with the 30% probability level for thermal ellipsoids; (b) coordination environment of each uranyl center for dimeric uranyl motif; (c-d) crystal lattice stacking for compound 2 viewed for c axis (c) and a axis (d) Color codes: uranium atoms in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms pale gray; the U-shaped linkers in green
Fig. 4 Crystal structure of compound 3 (a) ORTEP view of compound 3 with the 30% probability level for thermal ellipsoids; (b) coordination environments of uranyl center; (c-d) the extended structure based on one-dimensional oxalate-bridging monomeric uranyl chain with (c) or without (d) terminal isonicotinate ligands Color codes: uranium atoms or polyhedras in yellow; oxygen atoms in red; carbon atoms in dark gray; nitrogen atoms in blue; hydrogen atoms in pale gray
Fig. 5 pH-dependent regulation of hydrothermal reactions of m-Xyl-BPy4CA linkers and uranyl Color codes: uranium polyhedras in yellow; oxygen atoms in red; carbon atoms in gray; nitrogen atoms in blue
Fig. S1 Different optical morphologies of 1 with octa-nuclear uranyl (U8) motifs, 2 with binuclear uranyl (U2) motifs and 3 with monomeric uranyl (U1) motifs
Fig. S5 (a) A nearly planar geometry of U8 motif found in this work; (b) a non-planar U8 motif with cation-cation interactions (CCIs) reported by Loiseau, et al[1]
Fig. S6 (a-b) Eight-connected U8 motif with four oxalate (Ox) and four m-Xyl-BPy4CA (L) moieties extends from four directions through oxalate ligands (a), which thus connecting four adjacent ones with each oxalate ligand going together with a U-shaped bidentate m-Xyl-BPy4CA linker (b); (c) U8-based uranyl-oxalate 2D network (enlarged diagram: a minimum rhombic loop); (d) U8-based uranyl-oxalate 2D network with all the cross-linking m-Xyl-BPy4CA linkers omitted for clarity (enlarged diagram: a minimum rhombic loop in size of 1.193 nm× 1.077 nm)
Fig. S7 Each U8 motif displays a different overall orientation from that of its adjacent U8 with an angle of inclination of 36.6(4)° (a), resulting in a distortion of the rhombic loop (b)
Fig. S9 Two ‘U’-shaped bidentate m-Xyl-BPy4CA ligands located in the cavity of rhombic loop crosslink all the four U8 motifs through coordination bonds and hydrogen bonds (bottom) where one m-Xyl-BPy4CA ligand points upwards (top left) and the other points downwards from the opposite direction (top right)
Fig. S10 Hydrogen bonds between adjacent layers of 2D sheets through U8 motifs that interact with neighboured m-Xyl-BPy4CA from another sheet or m-Xyl-BPy4CA interacting with neighboured uranyl group from another sheet
Fig. S11 Some examples of high-nuclear uranyl motif based on nonlinear multi-topic organic ligands, as suggested by the cases of pentanuclear (U5), hexanuclear (U6) and octanuclear (U8) uranyl motifs derived from sulfobenzoate precursors[2], ortho-position or meta-position aromatic/heteroaromatic dicarboxylate[3,4], calixarene ligand[3] and U-shaped linkers used in this work
Fig. S13 Thermogravimetric analysis (TGA) of compounds 1, where 1 starts to decompose at ~295 ℃, and finally transforms to U3O8 with residual weight of 69.31% (theoretical value: 70.25%)
Fig. S14 Thermogravimetric analysis (TGA) of compounds 2, where 2 starts to decompose at ~233 ℃, and finally transforms to U3O8 with residual weight of 40.95% (theoretical value: 40.20%)
Fig. S15 Fourier transform infrared (IR) spectra of compounds 1 (U8 motif, blue line), 2 (U2 motif, red line) and 3 (U1 motif, black line) with characteristic symmetric ν1vibrations at 915, 911 and 910 nm, respectively
Fig. S16 The Raman spectra of compounds s 1 (U8 motif) and 3 (U1 motif) with characteristic asymmetric ν3 vibrations (1: 833 and 863 cm-1; 3: 829 and 860 cm-1)
Fig. S17 Solid-state fluorescence spectra of compound 1 and 2 as compared to that of uranyl nitrate (UO2(NO3)2): 1, a broad peak ranging from 530 to 550 nm; 2, five main emission bands located at 499, 520, 543, 568 and 596 nm; UO2(NO3)2, 488, 511, 534, 561 and 589 nm
Compound 1 | |||
---|---|---|---|
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1748(17) | U(2)-O(3) | 0.1752(15) |
U(1)-O(2) | 0.1770(2) | U(2)-O(4) | 0.1751(15) |
U(1)-O(9) | 0.2208(13) | U(2)-O(9) | 0.2275(12) |
U(1)-O(12) | 0.2327(15) | U(2)-O(10) | 0.2193(14) |
U(1)-O(13) | 0.2506(14) | U(2)-O(15) | 0.2466(14) |
U(1)-O(14) | 0.2440(18) | U(2)-O(16) | 0.2578(14) |
U(1)-O(18) | 0.2426(16) | U(2)-O(17) | 0.2380(17) |
U(3)-O(5) | 0.1746(17) | U(4)-O(7) | 0.165(3) |
U(3)-O(6) | 0.178(2) | U(4)-O(8) | 0.171(2) |
U(3)-O(9) | 0.2344(14) | U(4)-O(10) | 0.2200(14) |
U(3)-O(10) | 0.2237(14) | U(4)-O(11) | 0.242(2) |
U(3)-O(11c) | 0.248(2) | U(4)-O(11c) | 0.2461(14) |
U(3)-O(12) | 0.2349(17) | U(4)-O(16) | 0.249(2) |
U(3)-O(19a) | 0.2439(16) | U(4)-O(20d) | 0.2399(16) |
Compound 2 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1776(2) | U(1)-O(4) | 0.2364(2) |
U(1)-O(2) | 0.1784(2) | U(1)-O(5a) | 0.2358(2) |
U(1)-O(7) | 0.2325(2) | U(1)-O(7a) | 0.2339(2) |
U(1)-O(1W) | 0.2576(2) | ||
Compound 3 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.182(3) | U(1)-O(4b) | 0.244(2) |
U(1)-O(1a) | 0.182(3) | U(1)-O(5) | 0.237(2) |
U(1)-O(2) | 0.240(2) | U(1)-O(6) | 0.2307(18) |
U(1)-O(3) | 0.2397(19) |
Table S1 Selected bond distances related to uranyl centers in compounds 1, 2 and 3
Compound 1 | |||
---|---|---|---|
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1748(17) | U(2)-O(3) | 0.1752(15) |
U(1)-O(2) | 0.1770(2) | U(2)-O(4) | 0.1751(15) |
U(1)-O(9) | 0.2208(13) | U(2)-O(9) | 0.2275(12) |
U(1)-O(12) | 0.2327(15) | U(2)-O(10) | 0.2193(14) |
U(1)-O(13) | 0.2506(14) | U(2)-O(15) | 0.2466(14) |
U(1)-O(14) | 0.2440(18) | U(2)-O(16) | 0.2578(14) |
U(1)-O(18) | 0.2426(16) | U(2)-O(17) | 0.2380(17) |
U(3)-O(5) | 0.1746(17) | U(4)-O(7) | 0.165(3) |
U(3)-O(6) | 0.178(2) | U(4)-O(8) | 0.171(2) |
U(3)-O(9) | 0.2344(14) | U(4)-O(10) | 0.2200(14) |
U(3)-O(10) | 0.2237(14) | U(4)-O(11) | 0.242(2) |
U(3)-O(11c) | 0.248(2) | U(4)-O(11c) | 0.2461(14) |
U(3)-O(12) | 0.2349(17) | U(4)-O(16) | 0.249(2) |
U(3)-O(19a) | 0.2439(16) | U(4)-O(20d) | 0.2399(16) |
Compound 2 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.1776(2) | U(1)-O(4) | 0.2364(2) |
U(1)-O(2) | 0.1784(2) | U(1)-O(5a) | 0.2358(2) |
U(1)-O(7) | 0.2325(2) | U(1)-O(7a) | 0.2339(2) |
U(1)-O(1W) | 0.2576(2) | ||
Compound 3 | |||
Bond | Distance/nm | Bond | Distance/nm |
U(1)-O(1) | 0.182(3) | U(1)-O(4b) | 0.244(2) |
U(1)-O(1a) | 0.182(3) | U(1)-O(5) | 0.237(2) |
U(1)-O(2) | 0.240(2) | U(1)-O(6) | 0.2307(18) |
U(1)-O(3) | 0.2397(19) |
Compound 1 | ||||
---|---|---|---|---|
Hydrogen bond | D-H/nm | H··A/nm | D··A/nm | Angle/(°) |
C6-H6···O6 | 0.093 | 0.215 | 0.305 | 165 |
C17-H17···O1 | 0.093 | 0.243 | 0.316 | 135 |
C18-H18···O13 | 0.093 | 0.242 | 0.330 | 159 |
C15-H15···O5 | 0.093 | 0.245 | 0.322 | 141 |
C16-H16A···O3 | 0.097 | 0.242 | 0.321 | 138 |
Compound 2 | ||||
Hydrogen bond | D-H/nm | H···A/nm | D···A/nm | Angle/(°) |
O7-H7···O10 | 0.073 | 0.216 | 0.285 | 161 |
C16-H16···O10 | 0.093 | 0.258 | 0.324 | 128 |
C15-H16···O9 | 0.093 | 0.298 | 0.358 | 123 |
Table S2 Distances and angles for hydrogen bonds observed in compounds 1 and 2
Compound 1 | ||||
---|---|---|---|---|
Hydrogen bond | D-H/nm | H··A/nm | D··A/nm | Angle/(°) |
C6-H6···O6 | 0.093 | 0.215 | 0.305 | 165 |
C17-H17···O1 | 0.093 | 0.243 | 0.316 | 135 |
C18-H18···O13 | 0.093 | 0.242 | 0.330 | 159 |
C15-H15···O5 | 0.093 | 0.245 | 0.322 | 141 |
C16-H16A···O3 | 0.097 | 0.242 | 0.321 | 138 |
Compound 2 | ||||
Hydrogen bond | D-H/nm | H···A/nm | D···A/nm | Angle/(°) |
O7-H7···O10 | 0.073 | 0.216 | 0.285 | 161 |
C16-H16···O10 | 0.093 | 0.258 | 0.324 | 128 |
C15-H16···O9 | 0.093 | 0.298 | 0.358 | 123 |
Compound 1 | Compound 2 | Compound 3 | |
---|---|---|---|
Formula | C22H16N2O20U4 | C40H38N6O22U2 | C8H5NO8U |
Formula weight | 1580.49 | 1430.82 | 481.16 |
Crystal system | monoclinic | triclinic | orthorhombic |
Space group | P21/c | P-1 | Ibam |
a/nm | 1.15944(14) | 0.98277(3) | 2.6039(4) |
b/nm | 1.9854(3) | 1.05830(4) | 1.17462(13) |
c/nm | 1.5002(2) | 1.15097(4) | 0.91646(17) |
α/(º) | 90 | 82.951(2) | 90 |
β/(º) | 105.390(3) | 88.168(2) | 90 |
γ/(º) | 90 | 66.735(2) | 90 |
V/nm3 | 3.3296(8) | 1.09126(7) | 2.8031(7) |
Z | 4 | 1 | 8 |
T/K | 296 | 297 | 293 |
F(000) | 2760 | 680 | 1728 |
Dc/(g·cm-3) | 3.153 | 2.177 | 2.280 |
μ/mm-1 | a 19.480 | b 7.507 | c 32.914 |
Rint | 0.073 | 0.028 | 0.088 |
R1, wR2 (all data) | 0.0646, 0.1536 | 0.0227, 0.0491 | 0.0755, 0.2833 |
Table S3 Crystal data and structure refinement for compounds 1, 2 and 3
Compound 1 | Compound 2 | Compound 3 | |
---|---|---|---|
Formula | C22H16N2O20U4 | C40H38N6O22U2 | C8H5NO8U |
Formula weight | 1580.49 | 1430.82 | 481.16 |
Crystal system | monoclinic | triclinic | orthorhombic |
Space group | P21/c | P-1 | Ibam |
a/nm | 1.15944(14) | 0.98277(3) | 2.6039(4) |
b/nm | 1.9854(3) | 1.05830(4) | 1.17462(13) |
c/nm | 1.5002(2) | 1.15097(4) | 0.91646(17) |
α/(º) | 90 | 82.951(2) | 90 |
β/(º) | 105.390(3) | 88.168(2) | 90 |
γ/(º) | 90 | 66.735(2) | 90 |
V/nm3 | 3.3296(8) | 1.09126(7) | 2.8031(7) |
Z | 4 | 1 | 8 |
T/K | 296 | 297 | 293 |
F(000) | 2760 | 680 | 1728 |
Dc/(g·cm-3) | 3.153 | 2.177 | 2.280 |
μ/mm-1 | a 19.480 | b 7.507 | c 32.914 |
Rint | 0.073 | 0.028 | 0.088 |
R1, wR2 (all data) | 0.0646, 0.1536 | 0.0227, 0.0491 | 0.0755, 0.2833 |
[1] | ALTMAIER M, GAONA X, FANGHANEL T , et al. Recent advances in aqueous actinide chemistry and thermodynamics. Chemical Reviews, 2013,113(2):901-943. |
[2] | JONES M B, GAUNT A J . Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chemical Reviews, 2013,113(2):1137-1198. |
[3] | WANG K X, CHEN J S . Extended structures and physicochemical properties of uranyl-organic compounds. Accounts of Chemical Research, 2011,44(7):531-540. |
[4] | ANDREWS M B, CAHILL C L . Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chemical Reviews, 2013,113(2):1121-1136. |
[5] | YANG W T, PARKER T G, SUN Z M , et al. Structural chemistry of uranium phosphonates. Coordination Chemistry Reviews, 2015,303(1):86-109. |
[6] | LOISEAU T, MIHALCEA I, HENRY N , et al. The crystal chemistry of uranium carboxylates. Coordination Chemistry Reviews, 2014,266(35):69-109. |
[7] | RAI D, FELMY A R, RYAN J L , et al. Uranium (IV) hydrolysis constants and solubility product of UO2·xH2O(am). Inorganic Chemistry, 1990,29(2):260-264. |
[8] | AHRLAND S . On the complex chemistry of the uranyl ion Ι. The hydrolysis of the 6-valent uranium in aqueous solutions. Acta Chemica Scandinavica, 1949,3(4):374-400. |
[9] | ZANONATO P, DI BERNARDO P, BISMONDO A , et al. Hydrolysis of uranium (VI) at variable temperatures (10-85 ℃). Journal of the American Chemical Society, 2004,126(17):5515-5522. |
[10] | SALMON L, THUERY P, EPHRITIKHINE M , et al. Crystal structure of the first octanuclear uranium (IV) complex with compartmental schiff base ligands. Polyhedron, 2004,23(4):623-627. |
[11] | MIHALCEA I, HENRY N, CLAVIER N , et al. Occurence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode. Inorganic Chemistry, 2011,50(13):6243-6249. |
[12] | PASQUALE S, SATTIN S, ESCUDERO-ADAN E C , et al. Giant regular polyhedra from calixarene carboxylates and uranyl. Nature Communications, 2012,3(1):785. |
[13] | THUERY P . A highly adjustable coordination system: nanotubular and molecular cage species in uranyl ion complexes with kemp's triacid. Crystal Growth & Design, 2014,14(3):901-904. |
[14] | WANG L H, SHANG R, ZHENG Z , et al. Two systems of [DabcoH2]2+/[PipH2]2+-uranyl-oxalate showing reversible crystal-to- crystal transformations controlled by the diammonium/uranyl/oxalate ratios in aqueous solutions ([DabcoH2]2+=1,4-diazabicyclo- [2.2.2]-octaneH2 and [PipH2]2+ = PiperazineH2). Crystal Growth & Design, 2013,13(6):2597-2606. |
[15] | CHAPELET-ARAB B, NOWOGROCKI G, ABRAHAM E , et al. Crystal structure of new uranyl oxalates (NH4)2[UO2(C2O4)·2H2O] and (NH4)2-x(N2H5)x[UO2(C2O4)3]·3H2O (x=0 and x=1). Comparison with other uranyl oxalates. Radiochimica Acta, 2005,93(5):279-285. |
[16] | GIESTING P A, PORTER N J, BURNS P C , et al. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra. Zeitschrift für Kristallographie, 2006,221(8):589-599. |
[17] | GIESTING P A, PORTER N J, BURNS P C , et al. Uranyl oxalate hydrates: structures and IR spectra. Zeitschrift für Kristallographie, 2006,221(4):252-259. |
[18] | DUVIEUBOURG L, NOWOGROCKI G, ABRAHAM F , et al. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2 (C2O4)(OH)2(H2O)2] and [(UO2)2((C2O4)(OH)2(H2O)2]·H2O. Journal of Solid State Chemistry, 2005,178(11):3437-3444. |
[19] | THUERY P . Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids. Polyhedron, 2007,26(1):101-106. |
[20] | VOLOGZHANINA A V, SEREZHKINA L B, NEKLYUDOVA N A , et al. Synthesis and characterisation of a trinuclear uranyl complex: crystal structure of (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3]. Inorganica Chimica Acta, 2009,362(14):4921-4925. |
[21] | CHUGH C A, SHARMA A, SHARMA A , et al. Kinetics and mechanism of thermal decomposition of uranyl oxalate. Asian Journal of Chemistry, 2011,23(4):1865-1866. |
[22] | BARTLETT J R, COONEY R P , et al. On the determination of uranium oxygen bond lengths in dioxouranium (VI) compounds by raman-spectroscopy. Journal of Molecular Structure, 1989,193(1):295-300. |
[23] | BRACHMANN A, GEIPEL G, BERNHARD G , et al. Study of uranyl (VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochimica Acta, 2002,90(3):147-153. |
[24] | MEI L, WANG C Z, ZHU L Z , et al. Exploring new assembly modes of uranyl terephthalate: templated syntheses and structural regulation of a series of rare 2d→3d polycatenated frameworks. Inorganic Chemistry, 2017,56(14):7694-7706. |
[25] | NATRAJAN L S . Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coordination Chemistry Reviews, 2012,256(15/16):1583-1603. |
[26] | THUERY P, HARROWFIELD J . Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate. CrystEngComm, 2015,17(21):4006-4018. |
[27] | THUERY P, HARROWFIELD J . Structural variations in the uranyl/4,4'-biphenyldicarboxylate system. rare examples of 2d→3d polycatenated uranyl-organic networks. Inorganic Chemistry, 2015,54(16):8093-8102. |
[28] | THUERY P, RIVIERE E, HARROWFIELD J , et al. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties. Inorganic Chemistry, 2015,54(6):2838-2850. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||