无机材料学报 ›› 2019, Vol. 34 ›› Issue (5): 478-486.DOI: 10.15541/jim20180308 CSTR: 32189.14.10.15541/jim20180308
所属专题: 环境材料优选论文
收稿日期:
2018-07-06
修回日期:
2018-10-25
出版日期:
2019-05-20
网络出版日期:
2019-05-14
作者简介:
刘姿铔(1994-), 女, 硕士研究生. E-mail:270259089@qq.com
基金资助:
Zi-Ya LIU,Ru-Ya CAO,Man-Ying ZHANG()
Received:
2018-07-06
Revised:
2018-10-25
Published:
2019-05-20
Online:
2019-05-14
Supported by:
摘要:
膜污染一直是膜分离应用中的主要问题。将不同量的介孔石墨相氮化碳载银(m-g-C3N4/Ag)以共混法引入铸膜液中, 通过相转化法制备聚醚砜(PES)纳米复合膜, 系统研究了m-g-C3N4/Ag的添加对纳米复合膜形貌、过滤、抗菌、光催化和抗污染性能的影响。结果表明, m-g-C3N4/Ag的添加可以改善纳米复合膜的断面结构及表面亲水性。与纯PES膜相比, 纳米复合膜纯水通量随着掺杂量的增加显著提高, 各个样品对蛋白质的截留率均在90%以上, 表明m-g-C3N4/Ag的添加在不影响截留性能的前提下, 可以显著提高纳米复合膜的过滤性能。纳米复合膜的抗菌性能随着m-g-C3N4/Ag含量的增加而提高, 其中对铜绿假单胞菌的抗菌效果明显高于大肠杆菌。纯PES膜在光照下几乎不发生光降解。相比之下, 所有添加m-g-C3N4/Ag的纳米复合膜在可见光照射下均呈现良好的光催化性能, 且光催化活性随着m-g-C3N4/Ag的增加而逐渐增强。其中m-g-C3N4/Ag添加量最高的纳米复合膜显示出最明显的光催化作用, 在120 min内甲基橙的脱色率可达63%。通过四步过滤实验对所有膜的综合抗污染性能进行表征, 可知所有纳米复合膜通量恢复率均显著高于纯PES膜。水洗和可见光照射后所有膜的膜通量恢复率皆进一步提高。综上所述, 添加m-g-C3N4/Ag可以显著提高聚醚砜膜的抗菌性、可见光下光催化降解染料性能, 进而改善其综合抗污染性能。
中图分类号:
刘姿铔, 曹如雅, 张曼莹. 介孔石墨相氮化碳载银聚醚砜膜制备及性能研究[J]. 无机材料学报, 2019, 34(5): 478-486.
Zi-Ya LIU, Ru-Ya CAO, Man-Ying ZHANG. Preparation and Property of Polyethersulfone Ultrafiltration Membranes with Mesoporous-graphitic-C3N4/Ag[J]. Journal of Inorganic Materials, 2019, 34(5): 478-486.
Membrane abbreviation | Silver content/wt% | PES/wt% | DMF/wt% |
---|---|---|---|
M0 | 0 | 18 | 82.0 |
M1 | 0.1 | 18 | 81.9 |
M2 | 0.3 | 18 | 81.7 |
M3 | 0.5 | 18 | 81.5 |
M4 | 1.0 | 18 | 81.0 |
表1 实验中铸膜液组成
Table 1 Composition of dope solution
Membrane abbreviation | Silver content/wt% | PES/wt% | DMF/wt% |
---|---|---|---|
M0 | 0 | 18 | 82.0 |
M1 | 0.1 | 18 | 81.9 |
M2 | 0.3 | 18 | 81.7 |
M3 | 0.5 | 18 | 81.5 |
M4 | 1.0 | 18 | 81.0 |
Membrane abbreviation | CA/(°) | Porosity /% | Water uptake/% | MWCO /kDa |
---|---|---|---|---|
M0 | 68.50±1.64 | 63.31 | 31.77 | 69 |
M1 | 63.03±1.70 | 64.06 | 32.52 | 69 |
M2 | 60.27±1.90 | 64.51 | 32.94 | 69 |
M3 | 55.66±2.60 | 65.38 | 33.79 | 69 |
M4 | 53.75±4.70 | 66.04 | 34.42 | 69 |
表2 纳米复合膜的基本性能
Table 2 Basic specifications of the membranes
Membrane abbreviation | CA/(°) | Porosity /% | Water uptake/% | MWCO /kDa |
---|---|---|---|---|
M0 | 68.50±1.64 | 63.31 | 31.77 | 69 |
M1 | 63.03±1.70 | 64.06 | 32.52 | 69 |
M2 | 60.27±1.90 | 64.51 | 32.94 | 69 |
M3 | 55.66±2.60 | 65.38 | 33.79 | 69 |
M4 | 53.75±4.70 | 66.04 | 34.42 | 69 |
Membrane abbreviation | PA/% | EC/% |
---|---|---|
M0 | 0 | 0 |
M1 | 61 | 57 |
M2 | 100 | 76 |
M3 | 100 | 100 |
M4 | 100 | 100 |
表3 纳米复合膜的抗菌性能
Table 3 Antibacterial rate of membranes on E.coli and P. aeruginosa
Membrane abbreviation | PA/% | EC/% |
---|---|---|
M0 | 0 | 0 |
M1 | 61 | 57 |
M2 | 100 | 76 |
M3 | 100 | 100 |
M4 | 100 | 100 |
[1] |
QIAN DONG-LIANG, CHEN DONG-YUN, LI NA-JUN , et al. TiO2/sulfonated graphene oxide/Ag nanoparticle membrane: in situ separation and photodegradation of oil/water emulsions. Journal of Membrane Science, 2018,554:16-25.
DOI URL |
[2] |
GAO JIE, THONG ZHI-WEI, WANG KAI-YU , et al. Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes. Journal of Membrane Science, 2017,541:413-424
DOI URL |
[3] |
KANG GUO-DONG, GAO CONG-JIE, CHEN WEI-DONG , et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 2007,300(1):165-171.
DOI URL |
[4] | KIM JEONGHWAN , BRUGGEN VAN DER BART. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 2010,158(7):2335-2349. |
[5] |
HUANG JIAN, WANG HUAN-TING, ZHANG KAI-SONG . Modification of PES membrane with Ag-SiO2: reduction of biofouling and improvement of filtration performance. Desalination, 2014,336(1):8-17.
DOI URL |
[6] |
SHI HENG, HE YI, PAN YANG , et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science, 2016,506:60-70.
DOI URL |
[7] |
LI PING, WU WEN-JIAN, LIU JIN-DUN , et al. Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. Journal of Membrane Science, 2018,555:327-336.
DOI URL |
[8] |
KOSEOGLU-IMER DERYA Y, KOSE BORTE, ALTINBAS MAHMUT , et al. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes. Journal of Membrane Science, 2013,428(12):620-628.
DOI URL |
[9] |
WEN JIU-QING, XIE JUN, CHEN XIAO-BO , et al. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2016,391:72-123.
DOI URL |
[10] | MUÑOZ-BATISTA MARIO J, FONTELLES-CARCELLER OLGA, FERRER MANUEL , et al. Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Applied Catalysis B Environmental, 2016,183(1):86-95. |
[11] |
XUE JIN-JUAN, MA SHUAI-SHUAI, ZHOU YUMING , et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon- enhanced photocatalytic activity for antibiotic degradation. ACS Applied Materials & Interfaces, 2015,7(18):9630-9637.
DOI URL PMID |
[12] |
GONG YU-TONG, ZHANG PENG-FEI, XU XUAN , et al. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. Journal of Catalysis, 2013,297(1):272-280.
DOI URL |
[13] |
LI YI, LI YA-NAN, MA SHUANG-LONG , et al. Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light. Journal of Hazardous Materials, 2017,338:33-46.
DOI URL PMID |
[14] |
BASRI H, ISMAIL A F, AZIZ M . Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination, 2011,273(1):72-80.
DOI URL |
[15] |
NGUYEN ANH, ZOU LIN-DA, PRIEST CRAIGN . Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane. Journal of Membrane Science, 2014,454(6):264-271.
DOI URL |
[16] |
HOSSEIN RAZZAGHI MOHAMMAD, SAFEKORDI ALIAKBAR, TAVAKOLMOGHADAM MARYAM , et al. Morphological and separation performance study of PVDF/CA blend membranes. Journal of Membrane Science, 2014,470:547-557.
DOI URL |
[17] |
CAO XUE-LIAN, TANG MING, LIU FEI , et al. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids & Surfaces B Biointerfaces, 2010,81(2):555-562.
DOI URL PMID |
[18] | ZHU XIAO-YING, TANG LIN, WEE KIN-HO , et al. Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling, 2011,27(7):773-786. |
[19] |
IQBAL WAHEED, DONG CHUN-YANG, XING MINGYANG , et al. Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity. Catalysis Science & Technology, 2017,7(8):1726-1734.
DOI URL |
[20] |
MENG YA-LI, SHEN JU, CHEN DAN , et al. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Metals, 2011,30(1):276-279.
DOI URL |
[21] | ZHANG MAN-YING, LIU ZI-YA, GAO YONG , et al. Ag modified g-C3N4 composite entrapped PES UF membrane with visible- light-driven photocatalytic antifouling performance. RSC Advances, 2017,7(68):42919-42928. |
[22] |
ZHANG MAN-YING, FIELD ROBERT W, ZHANG KAI-SONG . Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. Journal of Membrane Science, 2014,471(23):274-284.
DOI URL |
[23] |
LIU SHA-SHA, ZHANG MAN-YING, FANG FANG , et al. Biogenic silver nanocomposite TFC nanofiltration membrane with antifouling properties. Desalination & Water Treatment, 2016,57(23):1-12.
DOI URL |
[24] |
ZHANG MAN-YING, ZHANG KAI-SONG, DE GUSSEME BART , et al. Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes . Water Research, 2012,46(7):2077-2087.
DOI URL PMID |
[25] |
XU ZHI-WEI, WU TENG-FEI, SHI JIE , et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 2016,520:281-293.
DOI URL |
[26] |
MÉRICQ J P, MENDRET J, BROSILLON S , et al. High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science, 2015,123:283-291.
DOI URL |
[27] | JIN WEN-JIE, HU CHAO-WU, LI LI-HUA , et al, Effect of graphene oxide concentration on morphologies and properties of polysulfone ultrafiltration membranes. Membrane Science and Techology, 2015,35:20-24. |
[28] |
LI JIAN-HUA, YAN BANG-FENG, SHAO XI-SHENG , et al. Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Applied Surface Science, 2015,324:82-89.
DOI URL |
[29] |
ZHANG WEI, ZHOU LI, DENG HUI-PING . Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. Journal of Molecular Catalysis A Chemical, 2016,423:270-276.
DOI URL |
[30] |
ZODROW KATHERINE, BRUNET LENA, MAHENDRA SHAILY , et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009,43(3):715-723.
DOI URL PMID |
[31] |
ZHAO HUAN-XIN, CHEN SHUO, QUAN XIE , et al. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B Environmental, 2016,194:134-140.
DOI URL |
[32] |
MOGHADAM MARYAM TAVAKOL, LESAGE GEOFFROY, MOHAMMADI TORAJ , et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. Journal of Applied Polymer Science, 2015,132(21):41731-41744.
DOI URL |
[33] |
DAMODAR RAHUL A, YOU SHENG-JIE, CHOU HUI-HSIANG . Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 2009,172(2/3):1321-1328.
DOI URL PMID |
[34] |
XU ZHI-WEI, ZHANG JI-GUO, SHAN MING-JING , et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 2014,458(10):1-13.
DOI URL |
[35] |
LIN BO, XUE CHAO, YAN XIAO-QING , et al. Facile fabrication of novel SiO2/g-C3N4 core-shell nanosphere photocatalysts with enhanced visible light activity. Applied Surface Science, 2015,357:346-355.
DOI URL |
[1] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[2] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[3] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. |
[4] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[5] | 李承瑜, 丁自友, 韩颖超. 锰掺杂纳米羟基磷灰石的体外抗菌-促成骨性能研究[J]. 无机材料学报, 2024, 39(3): 313-320. |
[6] | 张志民, 葛敏, 林翰, 施剑林. 新型磁电催化纳米粒子的活性氮释放与抗菌性能研究[J]. 无机材料学报, 2024, 39(10): 1114-1124. |
[7] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[8] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. |
[9] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[10] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[11] | 谢家晔, 李力文, 朱强. 三种临床盖髓剂的抗菌性及生物相容性对比研究[J]. 无机材料学报, 2023, 38(12): 1449-1456. |
[12] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[13] | 杜佳恒, 范鑫丽, 肖东琴, 尹一然, 李忠, 贺葵, 段可. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448. |
[14] | 孙晨, 赵昆峰, 易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报, 2023, 38(11): 1245-1256. |
[15] | 贾鑫, 李晋宇, 丁世豪, 申倩倩, 贾虎生, 薛晋波. Pd纳米颗粒协同氧空位增强TiO2光催化CO2还原性能[J]. 无机材料学报, 2023, 38(11): 1301-1308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||