[1] |
YANG Y, ZHENG G Y, CUI Y . Nanostructured sulfur cathodes. Chemical Society Reviews, 2013,42(7):3018-3032.
|
[2] |
ROSENMAN A, MARKEVICH E, SALITRA G , et al. Review on Li-sulfur battery systems: an integral perspective. Advanced Energy Materials, 2015, 5(11): 1500212-1-21.
|
[3] |
ZHANG R, CHENG X B, ZHAO C Z , et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Material, 2016,28(11):2155-2162.
|
[4] |
CHENG X B, ZHANG R, ZHAO C Z , et al. A review of solid electrolyte interphases on lithium metal anode. Advanced Material, 2016, 3(3): 1500213-1-20.
|
[5] |
MARMORSTEIN D, YU T H, STRIEBEL K A , et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. Journal of Power Sources, 2000,89(2):219-226.
|
[6] |
LI W Y, ZHENG G Y, CUI Y , et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium- sulphur batteries. Nature Communications, 2013, 4(4): 1331-1-6.
|
[7] |
CHEN H W, DONG W L, WANG C , et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Scientific Reports, 2013, 3(5): 1910-1-6.
|
[8] |
WU F, CHENG J Z, CHENG R J , et al. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium- sulfur batteries. ChemSusChem, 2013,6(8):1438-1444.
|
[9] |
DIRLAM P T, CHAR K, PYUN J , et al. The use of polymers in Li-S batteries: a review. Journal of Polymer Science A: Polymer Chemistry, 2017,55:1635-1668.
|
[10] |
PENG H J, HUANG J Q, WEU F , et al. Nanoarchitectured graphene/ CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Advanced Functional Materials, 2014,24(19):2772-2781.
|
[11] |
ZHANG Z, KONG L L, LIU S , et al. A high-efficiency sulfur/ carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Advanced Energy Materials, 2017, 7(11): 1602543-1-12.
|
[12] |
ZENG L C, YAO Y, YU Y , et al. A flexible S1-xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Materials, 2016,5:50-57.
|
[13] |
HANG S C, SONG M S, LEE J Y , et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. Journal of Electrochemical Society, 2003,150(7):A889-A893.
|
[14] |
CHANG Z, DING B, DOU H , et al. Hierarchically porous multilayered carbon barriers for high-performance Li-S batteries. Chemistry, 2018,24(15):3768-3775.
|
[15] |
LI G R, LEI W, CHEN Z W , et al. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Advanced Energy Materials, 2018, 8(8): 1702381-1-10.
|
[16] |
CHUNG S H, MANTHIRAM A . Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries. Electrochemistry Communications, 2014,38:91-95.
|
[17] |
HU M M, HU T, LI Z J , et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 2018,12(4):3578-3586.
|
[18] |
YANG W, SONG A L, SUN G , et al. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale, 2018,10(2):816-824.
|
[19] |
ZHAO Z X, QING D, WANG S , et al. Fabrication of high conductive S/C cathode by sulfur infiltration into hierarchical porous carbon/ carbon fiber weave-structured materials via vapor-melting method. Electrochimica Acta, 2014,127:123-131.
|
[20] |
LI X, WANG L J, XIA, LIU Z , et al. Catalytic oxidation of toluene over copper and manganese based catalysts: effect of water vapor. Catalysis Communications, 2011,14(1):15-19.
|
[21] |
CUI X L, SHAN Z Q, CUI L , et al. Enhanced electrochemical performance of sulfur/carbon nanocomposite material prepared via chemical deposition with a vacuum soaking step. Electrochimica Acta, 2013,105(26):23-30.
|
[22] |
SCHUSTER J, YIM T, NAZAR L F , et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium- sulfur batteries. Angewandte Chemie International Edition, 2012,51(15):3591-3595.
|
[23] |
NAZAR L F, JI X L, LEE K T . A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009,8(6):500-506.
|
[24] |
OSCHATZ M, THIEME S, BORCHARDT L , et al. A new route for the preparation of mesoporous carbon materials with high performance in lithium-sulphur battery cathodes. Chemical Communications, 2013,49(52):5832-5834.
|
[25] |
YI L L, WANG X Y, WANG G , et al. Improved electrochemical performance of spherical Li2FeSiO4/C cathode materials via Mn doping for lithium-ion batteries. Electrochimica Acta, 2016,222:1354-1364.
|
[26] |
LI G C, HU J J, LI G R , et al. Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. Journal of Power Sources, 2013,240(31):598-605.
|
[27] |
YAMIN H, GORENSHTEIN A, PENCINER J , et al. Lithium sulfur battery: oxidation/reduction mechanisms of polysulfides in THF solutions. Journal of Electrochemical Society, 1988,19(33):1045-1048.
|
[28] |
RAUH R D, ABRAHAM K M, PEARSON G F , et al. A lithium/ dissolved sulfur battery with an organic electrolyte. Journal of Electrochemical Society, 1979,126(4):523-527.
|
[29] |
KOLOSNITYN V S, KUZMINA E V, KARASEVA S E , et al. A study of the electrochemIcal processes in lithium-sulphur cells by impedance spectroscopy. Journal of Power Sources, 2011,196(3):1478-1482.
|
[30] |
XIE J, YANG J, ZHOU X , et al. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. Journal of Power Sources, 2014,253(5):55-63.
|