无机材料学报 ›› 2023, Vol. 38 ›› Issue (7): 717-730.DOI: 10.15541/jim20220549 CSTR: 32189.14.10.15541/jim20220549
所属专题: 【信息功能】敏感陶瓷(202409); 【信息功能】介电、铁电、压电材料(202409); 【信息功能】柔性材料(202409)
• 综述 • 下一篇
冒爱琴1(), 陆文宇1, 贾洋刚1, 王冉冉2,3(
), 孙静2
收稿日期:
2022-09-19
修回日期:
2022-11-02
出版日期:
2023-01-20
网络出版日期:
2023-01-20
通讯作者:
王冉冉, 研究员. E-mail: wangranran@mail.sic.ac.cn作者简介:
冒爱琴(1978-), 女, 副教授. E-mail: maoaiqin@ahut.edu.cn
基金资助:
MAO Aiqin1(), LU Wenyu1, JIA Yanggang1, WANG Ranran2,3(
), SUN Jing2
Received:
2022-09-19
Revised:
2022-11-02
Published:
2023-01-20
Online:
2023-01-20
Contact:
WANG Ranran, professor. E-mail: wangranran@mail.sic.ac.cnAbout author:
MAO Aiqin(1978-), female, associate professor. E-mail: maoaiqin@ahut.edu.cn
Supported by:
摘要:
可穿戴设备是能穿在身上, 实时获取人体或环境信息并进行传递和处理的功能设备, 在医疗健康、人工智能、运动娱乐等领域具有广阔的应用前景。随着可穿戴设备的发展, 各类柔性传感器应运而生。基于压电效应的柔性力学传感器因具有感应频率宽、响应快、线性好、自供电等优势而备受关注。然而传统的压电材料多为脆性陶瓷和晶体材料, 限制了其在柔性方面的应用。随着研究的深入, 越来越多的柔性压电材料和压电复合材料不断涌现, 给柔性可穿戴力学器件注入了新的发展活力。本文主要概括了柔性可穿戴压电器件的前沿进展, 包括压电原理、柔性压电材料的制备与性能提升方法。此外, 还详细总结了柔性可穿戴压电设备的主要应用方向, 包括医疗健康和人机交互, 以及遇到的挑战与机遇。
中图分类号:
冒爱琴, 陆文宇, 贾洋刚, 王冉冉, 孙静. 柔性压电器件及其可穿戴应用[J]. 无机材料学报, 2023, 38(7): 717-730.
MAO Aiqin, LU Wenyu, JIA Yanggang, WANG Ranran, SUN Jing. Flexible Piezoelectric Devices and Their Wearable Applications[J]. Journal of Inorganic Materials, 2023, 38(7): 717-730.
图2 压电基础原理[1-2,10,13⇓-15]
Fig. 2 Fundamental principles of piezoelectric effect[1-2,10,13⇓-15] (a) Schematic diagram of piezoelectric effect[1]; (b) Structure and piezoelectric effect of BTO[2]; (c) Structure and piezoelectric effect of ZnO[10]; (d) Structure and piezoelectric effect of monolayer MoS2[13]; (e) Different crystalline phase structures of PVDF[14]; (f) Structure and piezoelectric effect of chitin[15]
图3 制备方法与表面改性[57⇓⇓⇓⇓-62]
Fig. 3 Preparation methods and surface modification[57⇓⇓⇓⇓-62] (a) Schematic diagram of electrospinning[57]; (b) Electrospun PVDF fibers with different morphologies[58]; (c) Schematic diagram of the preparation of thin films by LB method[59]; (d) PDA-coated BTO[60]; (e) Ag-decorated BTO[61]; (f) Carbon-coated BTO[62]
图4 化学掺杂与结构改善[84-85,87 -88]
Fig. 4 Chemical doping and structural improvement[84-85,87 -88] (a) Tb-doped ZnO[84]; (b) Output of modified ZnO with different concentrations[84]; (c) Effect of doping with different halogen elements on ZnO[85]; (d) Effect of doping with different halogen elements on the piezoelectric output of ZnO[85]; (e) Schematic diagram of the GAMF device[87]; (f) Piezoelectric active layers with different structures[88] (1 kgf=9.8 N)
图5 可穿戴器件的生理监测应用[45,89]
Fig. 5 Physiological monitoring applications of flexible wearable devices[45,89] (a) Principle of blood pressure monitoring with dual-sensor[89]; (b) Principle of blood pressure monitoring with single-sensor[89]; (c) Schematic diagram of interlocking ZnO NRs[45]; (d) Interlocking ZnO structure for monitoring breathing, heartbeat and leg muscle movement[45]
图6 可穿戴器件的伤口愈合与植入式应用[90⇓⇓-93]
Fig. 6 Flexible wearable devices for wound healing and implantable applications[90⇓⇓-93] (a) PVDF device for promoting wound healing[90]; (b) PVDF device with composite electrodes for wound healing and nerve cell restored[91]; (c) Ultraflexible piezoelectric energy harvesting and sensing integrated devices[92]; (d) Schematic diagram of implantable ultrasonic piezoelectric device[93]; (e) Analgesic effects of wireless ultrasound-driven implantable devices
图7 柔性可穿戴器件的人机交互[94⇓⇓-97]
Fig. 7 Flexible wearable devices for human-computer interaction[94⇓⇓-97] (a) Intelligent piezoelectric tactile sensor[94]; (b) Visualized force glove and its structure[95]; (c) Wireless controlled manipulator[96]; (d) Gesture recognition glove[97]
[1] |
DENG W, ZHOU Y, LIBANORI A, et al. Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51(9):3380.
DOI URL |
[2] |
XU Q, GAO X, ZHAO S, et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Advanced Materials, 2021, 33(27):2008452.
DOI URL |
[3] |
DU X, ZHOU Z, ZHANG Z, et al. Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators. Journal of Advanced Ceramics, 2022, 11(2):331.
DOI |
[4] |
SU Y, LI W, CHENG X, et al. High-performance piezoelectric composites via β phase programming. Nature Communications, 2022, 13(1):4867.
DOI |
[5] |
LI M, SHI X N, ZHANG Z L, et al. Ferroelectricity of flexible Pb(Zr0.53Ti0.47)O3 thin film at high temperature. Acta Physica Sinica, 2019, 68(8):087302.
DOI URL |
[6] |
CAO X, XIONG Y, SUN J, et al. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Advanced Functional Materials, 2021, 31(33):2102983.
DOI URL |
[7] | MAHANTY B, GHOSH S K, JANA S, et al. ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy & Fuels, 2021, 5(17):4389. |
[8] |
PARK J, GHOSH R, SONG M S, et al. Individually addressable and flexible pressure sensor matrixes with ZnO nanotube arrays on graphene. NPG Asia Materials, 2022, 14(1):40.
DOI |
[9] |
KIM M, WU Y S, KAN E C, et al. Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 2018, 10(7):745.
DOI URL |
[10] | LE A T, AHMADIPOUR M, PUNG S Y. A review on ZnO-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications. Journal of Alloys and Compounds, 2020, 844: 156172. |
[11] | ZHU L, XIANG Y, LIU Y, et al. Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally- grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 2022, 341: 113552. |
[12] |
LIU Y, ZHU L, XIANG Y, et al. Sensitivity enhancement of the tactile sensor based on hydrothermally grown ZnO nanorods modified by catalytic Au nanoparticles. Materials Research Express, 2022, 9(4):045004.
DOI |
[13] |
DAI M, ZHENG W, ZHANG X, et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Letters, 2020, 20(1):201.
DOI URL |
[14] | SHEPELIN N A, GLUSHENKOV A M, LUSSINI V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy & Environmental Science, 2019, 12(4):1143. |
[15] | YANG X, LIU J, PEI Y, et al. Recent progress in preparation and application of nano-chitin materials. Energy & Environmental Materials, 2020, 3(4):492. |
[16] |
WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523):470.
DOI |
[17] |
XUE F, ZHANG J, HU W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12(5):4976.
DOI URL |
[18] |
NIKBAKHTNASRABADI F, HOSSEINI E S, DERVIN S, et al. Smart bandage with inductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly-L-lactide nanofibers. Advanced Electronic Materials, 2022, 8(7):2101348.
DOI URL |
[19] | STREET R M, MINAGAWA M, VENGRENYUK A, et al. Piezoelectric electrospun polyacrylonitrile with various tacticities. Journal of Applied Polymer Science, 2019, 136(20):47530. |
[20] | PI Z, ZHANG J, WEN C, et al. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy, 2014, 7: 33. |
[21] |
SONG H, LI H, LIM S. Fast 3D digital light process printing of PVDF-HFP composite with electric in situ poling system for piezoelectric applications. Macromolecular Materials and Engineering, 2021, 306(10):2100266.
DOI URL |
[22] | LI H, LIAN W, CHENG T, et al. Highly tunable piezoelectricity of flexible nanogenerators based on 3D porously architectured membranes for versatile energy harvesting and self-powered multistimulus sensing. ACS Sustainable Chemistry & Engineering, 2021, 9(50):17128. |
[23] |
LOVINGER A J. Ferroelectric polymers. Science, 1983, 220(4602):1115.
PMID |
[24] |
SAHU M, HAJRA S, LEE K, et al. Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics. Crystals, 2021, 11(2):85.
DOI URL |
[25] | ZHANG M, GAO T, WANG J, et al. Single BaTiO3 nanowires- polymer fiber based nanogenerator. Nano Energy, 2015, 11: 510. |
[26] | NIU X, JIA W, QIAN S, et al. High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 2019, 7(1):979. |
[27] |
XIA M, LUO C, SU X, et al. KNN/PDMS/C-based lead-free piezoelectric composite film for flexible nanogenerator. Journal of Materials Science: Materials in Electronics, 2019, 30(8):7558.
DOI |
[28] |
PROMSAWAT N, PROMSAWAT M, JANPHUANG P, et al. CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application. Integrated Ferroelectrics, 2018, 187(1):70.
DOI URL |
[29] |
ISSA A A, AL-MAADEED M A, LUYT A S, et al. Physico- mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C-Journal of Carbon Research, 2017, 3(4):30.
DOI URL |
[30] | GARAIN S, JANA S, SINHA T K, et al. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Applied Materials & Interfaces, 2016, 8(7):4532. |
[31] |
ADHIKARY P, BISWAS A, MANDAL D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology, 2016, 27(49):495501.
DOI URL |
[32] | ZHAO C, NIU J, ZHANG Y, et al. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous membrane applied in wearable piezoelectric nanogenerator. Composites Part B: Engineering, 2019, 178: 107447. |
[33] |
ZEYREK ONGUN M, OGUZLAR S, DOLUEL E C, et al. Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. Journal of Materials Science: Materials in Electronics, 2020, 31(3): 1960.
DOI |
[34] | WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Composites Science and Technology, 2021, 202: 108600. |
[35] | KIM J, JANG M, JEONG G, et al. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly- sensitive dynamic force sensors. Nano Energy, 2021, 89: 106409. |
[36] | YANG Y N, WANG R R, SUN J. MXenes in flexible force sensitive sensors: a review. Journal of Inorganic Materials, 2019, 35(1):8. |
[37] | SINGH D, CHOUDHARY A, GARG A. Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Applied Materials & Interfaces, 2018, 10(3):2793. |
[38] |
AN N, LIU H, DING Y, et al. Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Applied Surface Science, 2011, 257(9):3831.
DOI URL |
[39] |
ALAM M M, SULTANA A, MANDAL D. Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Applied Energy Materials, 2018, 1(7):3103.
DOI URL |
[40] |
SEBASTIAN M S, LARREA A, GONÇALVES R, et al. Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures. RSC Advances, 2016, 6(114):113007.
DOI URL |
[41] | SAMADI A, HOSSEINI S M, MOHSENI M. Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Organic Electronics, 2018, 59: 149. |
[42] | NARDEKAR S S, KRISHNAMOORTHY K, PAZHAMALAI P, et al. MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell. Nano Energy, 2022, 93: 106869. |
[43] | DUDEM B, KIM D H, BHARAT L K, et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Applied Energy, 2018, 230: 865. |
[44] | KOç M, PARALı L, ŞAN O. Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT. Polymer Testing, 2020, 90: 106695. |
[45] | YANG T, PAN H, TIAN G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy, 2020, 72: 104706. |
[46] | MARIA JOSEPH RAJ N P, KS A, KHANDELWAL G, et al. A lead-free ferroelectric Bi0.5Na0.5TiO3 based flexible, lightweight nanogenerator for motion monitoring applications. Sustainable Energy & Fuels, 2020, 4(11):5636. |
[47] | NAIR K S, VARGHESE H, CHANDRAN A, et al. Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 2022, 31: 103291. |
[48] | HU X, YAN X, GONG L, et al. Improved piezoelectric sensing performance of P(VDF-TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes. ACS Applied Materials & Interfaces, 2019, 11(7):7379. |
[49] |
LIU M, LIU Y, ZHOU L. Novel flexible PVDF-TrFE and PVDF-TrFE/ZnO pressure sensor: fabrication, characterization and investigation. Micromachines, 2021, 12(6):602.
DOI URL |
[50] | SONG Y, WU T, BAO J, et al. Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting. Carbohydrate Polymers, 2022, 288: 119407. |
[51] |
HOQUE N A, THAKUR P, BISWAS P, et al. Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator. Journal of Materials Chemistry A, 2018, 6(28):13848.
DOI URL |
[52] | KIM K N, CHUN J, CHAE S A, et al. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy, 2015, 14: 87. |
[53] | HEO K, JIN H E, KIM H, et al. Transient self-templating assembly of M13 bacteriophage for enhanced biopiezoelectric devices. Nano Energy, 2019, 56: 716. |
[54] | SHIN D M, HAN H J, KIM W G, et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy & Environmental Science, 2015, 8(11):3198. |
[55] |
KAPAT K, SHUBHRA Q T H, ZHOU M, et al. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Advanced Functional Materials, 2020, 30(44):1909045.
DOI URL |
[56] |
GUERIN S, STAPLETON A, CHOVAN D, et al. Control of piezoelectricity in amino acids by supramolecular packing. Nature Materials, 2018, 17(2):180.
DOI PMID |
[57] | YU S, TAI Y, MILAM-GUERRERO J, et al. Electrospun organic piezoelectric nanofibers and their energy and bio applications. Nano Energy, 2022, 97: 107174. |
[58] |
ZAAROUR B, ZHU L, HUANG C, et al. Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology. Journal of Applied Polymer Science, 2019, 136(6):47049.
DOI URL |
[59] |
CHEN S, LI X, YAO K, et al. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir-Blodgett deposition. Polymer, 2012, 53(6):1404.
DOI URL |
[60] | SU Y, LI W, YUAN L, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 2021, 89: 106321. |
[61] | SHUAI C, LIU G, YANG Y, et al. A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy, 2020, 74: 104825. |
[62] | ZHOU Z, ZHANG Z, ZHANG Q, et al. Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: a cost-effective approach to high-performance piezoelectric nanogenerators. ACS Applied Materials & Interfaces, 2020, 12(1):1567. |
[63] | JELLA V, IPPILI S, EOM J H, et al. Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films. Nano Energy, 2018, 53: 46. |
[64] |
SHIN S H, KIM Y H, LEE M H, et al. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano, 2014, 8(3):2766.
DOI URL |
[65] | CHO Y, JEONG J, CHOI M, et al. BaTiO3@PVDF-TrFE nanocomposites with efficient orientation prepared via phase separation nano-coating method for piezoelectric performance improvement and application to 3D-PENG. Chemical Engineering Journal, 2022, 427: 131030. |
[66] |
JANA S, GARAIN S, GHOSH S K, et al. The preparation of γ-crystalline non-electrically poled photoluminescant ZnO-PVDF nanocomposite film for wearable nanogenerators. Nanotechnology, 2016, 27(44):445403.
DOI URL |
[67] | FU J, HOU Y, GAO X, et al. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy, 2018, 52: 391. |
[68] |
PATRA A, PAL A, SEN S. Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceramics International, 2018, 44(10):11196.
DOI URL |
[69] |
WU C, KIM T W, PARK J H, et al. Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano, 2017, 11(8):8356.
DOI URL |
[70] | ZHANG S T, AN Q. Progress on the design and fabrication of high performance piezoelectric flexible materials based on polyvinylidene fluoride. Chemical Journal of Chinese Universities, 2021, 42(4):1114. |
[71] | WANG G, LIU T, SUN X C, et al. Flexible pressure sensor based on PVDF nanofiber. Sensors and Actuators A: Physical, 2018, 280: 319. |
[72] |
HE S, GUO M, DAN Z, et al. Large-area atomic-smooth polyvinylidene fluoride Langmuir-Blodgett film exhibiting significantly improved ferroelectric and piezoelectric responses. Science Bulletin, 2021, 66(11):1080.
DOI PMID |
[73] | AJRAVAT K, BRAR L K. Topographical evolution of multilayer PVDF thin films deposited using Langmuir-Blodgett technique. AIP Conference Proceedings, 2020, 2265(1):030317. |
[74] |
PAUL R, BANIK H, ALZAID M, et al. Interaction of a phospholipid and a coagulating protein: potential candidate for bioelectronic applications. ACS Omega, 2022, 7(21):17583.
DOI PMID |
[75] |
TRAMONTI V L, MARTINA C, RAULUCCHESI M, et al. Graphene oxide/silver nanoparticles platforms for the detection and discrimination of native and fibrillar lysozyme: a combined QCM and SERS approach. Nanomaterials, 2022, 12(4):600.
DOI URL |
[76] | YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical, 2020, 301: 111789. |
[77] |
SU Y, CHEN C, PAN H, et al. Muscle fibers inspired high- performance piezoelectric textiles for wearable physiological monitoring. Advanced Functional Materials, 2021, 31(19):2010962.
DOI URL |
[78] | LI X, JI D, YU B, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chemical Engineering Journal, 2021, 426: 130345. |
[79] | GOEL S, KUMAR B. A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 2020, 816: 152491. |
[80] |
LIU C, YU A, PENG M, et al. Improvement in the piezoelectric performance of a ZnO nanogenerator by a combination of chemical doping and interfacial modification. The Journal of Physical Chemistry C, 2016, 120(13):6971.
DOI URL |
[81] | CAO V A, KIM M, LEE S, et al. Enhanced output performance of a flexible piezoelectric nanogenerator realized by lithium-doped zinc oxide nanowires decorated on MXene. ACS Applied Materials & Interfaces, 2022, 14(23):26824. |
[82] | KANG L, AN H, PARK J Y, et al. La-doped p-type ZnO nanowire with enhanced piezoelectric performance for flexible nanogenerators. Applied Surface Science, 2019, 475: 969. |
[83] |
LAURENTI M, CANAVESE G, SACCO A, et al. Nanobranched ZnO structure: p-type doping induces piezoelectric voltage generation and ferroelectric-photovoltaic effect. Advanced Materials, 2015, 27(28):4218.
DOI URL |
[84] |
BATRA K, SINHA N, KUMAR B. Tb-doped ZnO:PDMS based flexible nanogenerator with enhanced piezoelectric output performance by optimizing nanofiller concentration. Ceramics International, 2020, 46(15):24120.
DOI URL |
[85] | ZHANG Y, LIU C, LIU J, et al. Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Applied Materials & Interfaces, 2016, 8(2):1381. |
[86] |
GARG A, AGRAWAL D C. Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Materials Science and Engineering: B, 2001, 86(2):134.
DOI URL |
[87] |
ZHANG H, WEN P, LI P, et al. Enhanced output performance of flexible piezoelectric energy harvester by using auxetic graphene films as electrodes. Applied Physics Letters, 2020, 117(10):103901.
DOI URL |
[88] |
LIU X, LIU J, HE L, et al. 3D printed piezoelectric-regulable cells with customized electromechanical response distribution for intelligent sensing. Advanced Functional Materials, 2022, 32(26):2201274.
DOI URL |
[89] |
YI Z, LIU Z, LI W, et al. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Advanced Materials, 2022, 34(16):2110291.
DOI URL |
[90] | WANG A, LIU Z, HU M, et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy, 2018, 43: 63. |
[91] | TAN M H, XU X H, YUAN T J, et al. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials, 2022, 283: 121413. |
[92] |
PETRITZ A, KARNER-PETRITZ E, UEMURA T, et al. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nature Communications, 2021, 12(1):2399.
DOI PMID |
[93] |
ZHANG T, LIANG H, WANG Z, et al. Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Science Advances, 2022, 8(15):eabk0159.
DOI URL |
[94] | LÜ P, QIAN J, YANG C, et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy, 2022, 97: 107182. |
[95] |
YAO D, CUI H, HENSLEIGH R, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Advanced Functional Materials, 2019, 29(42):1903866.
DOI URL |
[96] | DENG W, YANG T, JIN L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55: 516. |
[97] |
GAO C, LONG Z, ZHONG T, et al. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film. Journal of Physics D: Applied Physics, 2022, 55(19):194004.
DOI |
[98] |
LIU W, LONG Z, YANG G, et al. A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors, 2022, 12(2):60.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[3] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 赵雅文, 屈发进, 汪岩屹, 王智文, 陈初升. 基于硅酸铝纤维的柔性氧敏感元件的制备和性能[J]. 无机材料学报, 2024, 39(10): 1084-1090. |
[6] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[7] | 白志强, 赵璐, 白云峰, 冯锋. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4): 361-375. |
[8] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
[9] | 罗艺, 夏书海, 牛波, 张亚运, 龙东辉. 柔性有机硅气凝胶的制备及其高温无机化转变研究[J]. 无机材料学报, 2022, 37(12): 1281-1288. |
[10] | 黄田, 赵运超, 李琳琳. 压电半导体纳米材料在声动力疗法中的应用进展[J]. 无机材料学报, 2022, 37(11): 1170-1180. |
[11] | 方华靖, 赵泽天, 武文婷, 汪宏. 柔性电致变色器件研究进展[J]. 无机材料学报, 2021, 36(2): 140-151. |
[12] | 徐海丰,侯成义,张青红,李耀刚,王宏志. 碲纳米线柔性薄膜的制备及其热电性能[J]. 无机材料学报, 2020, 35(9): 1034-1040. |
[13] | 杨以娜, 王冉冉, 孙静. MXenes在柔性力敏传感器中的应用研究进展[J]. 无机材料学报, 2020, 35(1): 8-18. |
[14] | 吕喜庆, 张环宇, 李瑞, 张梅, 郭敏. Nb2O5包覆对TiO2纳米阵列/上转换发光复合结构柔性染料敏化太阳能电池性能的影响[J]. 无机材料学报, 2019, 34(6): 590-598. |
[15] | 李鹏, 聂晓蕾, 田烨, 方文兵, 魏平, 朱婉婷, 孙志刚, 张清杰, 赵文俞. Bi0.5Sb1.5Te3/环氧树脂柔性复合热电厚膜的制备及其面内制冷性能[J]. 无机材料学报, 2019, 34(6): 679-684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||