[1] |
CHEN F S, EUSIC J E, KURTZ S K,et al. Light modulation and beam deflection with potassium tantalate-niobate crystals. J. Appl. Phys., 1966, 37(1): 388-398.
|
[2] |
WANG J Y, GUAN Q C, WEI J Q,et al. Growth and characterization of cubic KTa1-xNbxO3 crystals. J. Cryst. Growth, 1992, 116: 27-36.
|
[3] |
SASAURA M, IMAI T, KOHDA H, et al. TSSG pulling and LPE growth of KTa1-xNbxO3 for optical waveguides. J. Cryst. Growth, 2005, 275: e2099-e2103.
|
[4] |
SHINAGAWA M, KOBAYASHI J, YAGI S,et al. Sensitive electro-optic sensor using KTa1-xNbxO3 crystal. Sens. Actuators A, 2013, 192: 42-48.
|
[5] |
OHMI M, FUKUDA A, MIYAZU J,et al. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector. Appl. Phys. Express, 2015, 8: 027001.
|
[6] |
RYTZ D, SCHEEL H J.Crystal growth of KTa1-xNbxO3 (0<x≤0.04) solid solutions by a slow-cooling method. J. Cryst. Growth, 1982, 59: 468-484.
|
[7] |
KUGEL G E, MESLI H, FONTANA M D.Experimental and theoretical study of the Raman spectrum in KTa1- xNbxO3 solid solutions. Phys. Rev. B, 1988, 37(10): 5619-5628.
|
[8] |
WHIPPS P W.Growth of high-quality crystals of KTN.J. Cryst. Growth, 1972, 12: 120-124.
|
[9] |
IMAI T, YAGI S, SUGIYAMA Y,et al. Growth of potassium tantalate niobate single crystal fibers by the laser-heated pedestal growth method assisted by a crystal cooling technique. J. Cryst. Growth, 1995, 147: 350-354.
|
[10] |
WANG X P, LIU B, YANG Y G,et al. Growth of KTN crystals by double crucible Czochralski method. Mater. Res. Innovations, 2014, 18(5): 334-339.
|
[11] |
ILANGOVAN R, BALAKUMAR S, SUBRAMANIAN C,et al. Growth and characterization of KTa0.3Nb0.7O3 single crystals. Mater. Chem. Phys., 1993, 36: 174-176.
|
[12] |
WANG X P, WANG J Y, WU J,et al. Growth defects in cubic KTa1-xNbxO3 crystal. Chinese J. Struct. Chem., 2008, 27(3): 261-266.
|
[13] |
WANG X P, WANG J Y, YU Y G,et al. Cubic KTa1-xNbxO3 crystal growth by Czochraski method. Chinese J. Rare Metals, 2006, 30(6): 841-845.
|
[14] |
LIU Z H, JIN W Q, PAN Z L,et al. Experiment and numerical simulation of velocity and temperature fields in KNbO3 solution. J. Inorg. Mater., 2002, 17(6): 1112-1116.
|
[15] |
PAN X H, JIN W Q, AI F,et al. Effect of surface-tension driven convection on interfacial boundary layer during BaB2O4 single crystal growth. J. Inorg. Mater., 2007, 22(6): 1239-1242.
|
[16] |
LIANG X A, JIN W Q, PAN Z L,et al. Study on Bi12SiO20 melt Marangoni convection. J. Inorg. Mater., 2001, 16(1): 32-36.
|
[17] |
HONG Y, JIN W Q, PAN X H.Thermalcapillary convection in NaBi(WO4) melt.Chin. Phys. Lett., 2004, 21(10): 1986-1988.
|
[18] |
HONG Y, JIN W Q, PAN X H,et al. In situ observation of dendrite in Pb5Ge3O11 crystal growth. J. Inorg. Mater., 2006, 21(2): 335-338.
|
[19] |
PAN X H, JIN W Q, LIU Y,et al. Effect of surface tension-driven flow on BaB2O4 crystal growth from high temperature melt-solution. Cryst. Res. Technol., 2008, 43(2): 152-156.
|
[20] |
MASOTTA M, NI H, KEPPLER H.In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts. Contrib. Mineral. Petrol, 2014, 167(2): 1-14.
|
[21] |
PAPALE P.Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids.Contrib. Mineral. Petrol., 1997, 126: 237-251.
|
[22] |
YAO T, HAN J C, ZUO H B,et al. Bubble formation in sapphire single crystals. J. Inorg. Mater., 2008, 23(2): 439-442.
|
[23] |
URUSHIHARA Y, HASEGAWA H, IWASAKI N.X-ray micro-CT observation of the apical skeleton of Japanese white coral corallium konojoi.J. Exp. Mar. Biol. Ecol., 2016, 475: 124-128.
|