无机材料学报 ›› 2016, Vol. 31 ›› Issue (3): 225-233.DOI: 10.15541/jim20150412 CSTR: 32189.14.10.15541/jim20150412
• 综述 • 下一篇
收稿日期:
2015-08-31
修回日期:
2015-10-12
出版日期:
2016-03-20
网络出版日期:
2016-02-24
作者简介:
张耀君(1959-), 男, 教授. E-mail: zhangyaojun@xauat.edu.cn
基金资助:
ZHANG Yao-Jun(), YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke
Received:
2015-08-31
Revised:
2015-10-12
Published:
2016-03-20
Online:
2016-02-24
Supported by:
摘要:
碱激发固体铝硅酸盐胶凝材料是先进无机非金属材料的前瞻性研究领域之一, 本文对碱激发铝硅酸盐胶凝材料的分类、制备工艺、形成机理以及潜在的应用前景进行了综述; 详尽地论述了碱激发胶凝材料基新型催化剂的最新研究进展, 综合分析了碱激发胶凝材料作为结构材料研究的局限性, 展望了该材料作为新型催化材料的发展动态。
中图分类号:
张耀君, 杨梦阳, 康乐, 张力, 张科. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报, 2016, 31(3): 225-233.
ZHANG Yao-Jun, YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke. Research Progresses of New Type Alkali-activated Cementitious Material Catalyst[J]. Journal of Inorganic Materials, 2016, 31(3): 225-233.
图2 癸烷在PtNH4-Geo-2 (▲)、FeKCa-Geo-2 (○) 和 CoNH4-Geo-2 (■)催化剂上的转化率(a)以及CO2(实线)和CO(点线) 的选择性(b)[51]
Fig. 2 Conversion of decane (a) and selectivity for CO2 (solid line) and CO (dot line) (b) over PtNH4-Geo-2 (▲), FeKCa-Geo-2 (○) and CoNH4-Geo-2 (■)[51]
图3 碱激发钢渣基胶凝材料催化剂对亚甲基蓝染料光催化降解率[56]
Fig. 3 Photocatalytic degradation rate of methylene blue dye over alkali-activated steel slag-based gel catalysts[56]
[1] | SALAHUDDIN M B M, NORKHAIRUNNISA M, MUSTAPHA F. A review on thermophysical evaluation of alkali-activated geopolymers.Ceram. Int., 2015, 41: 4273-4281. |
[2] | RASHAD A M.Alkali-activated metakaolin: a short guide for civil engineer - an overview.Constr. Build. Mater., 2013, 41: 751-765. |
[3] | KHALE D, CHAUDHARY R.Mechanism of geopolymerization and factors influencing its development: a review.J. Mater. Sci., 2007, 42: 729-746. |
[4] | PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S.Alkali- activated binders: a review part 1. Historical background, terminology, reaction mechanisms and hydration products.Constr. Build. Mater., 2008, 22: 1305-1314. |
[5] | KOMNITSAS K, ZAHARAKI D.Geopolymerisation: a review and prospects for the minerals industry.Miner. Eng., 2007, 20: 1261-1277. |
[6] | ROY D M.Alkali activated cement opportunities and challenges.Cem. Concr. Res., 1999, 29: 249-254. |
[7] | DUXSON P, FERNANDEZ-JIMENEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the art. J. Mater. Sci., 2007, 42: 2917-2933. |
[8] | DAVIDOVITS J.Geopolymers and geopolymeric new materials.J. Therm. Anal., 1989, 35: 429-441. |
[9] | DAVIDOVITS J.Geopolymers: inorganic polymer new materials.J. Therm. Anal., 1991, 37: 1633-1656. |
[10] | HEITSMANN R F, FITZGERALD M, SAWYER J L.Patent, No.4643137. 1987. |
[11] | MALLICOAT S, SARIN P, KRIVEN W M.Novel alkali-bonded ceramic filtration membranes.Ceram. Eng. Sci. Proc., 2008, 26(8): 37-44. |
[12] | RAHIER H, VAN MELE B, BIESEMANS M, et al. Low-temperature synthesized aluminosilicate glasses. J. Mater. Sci., 1996, 31: 71-79. |
[13] | PURDON A O.The action of alkalis on blast-furnace slag.J. Soc. Chem. Ind., 1940, 59: 191-202. |
[14] | XU H, VAN DEVENTER J S J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspar.Colloids Surf. A, 2003, 216(1/2/3): 27-44. |
[15] | XU H, VAN DEVENTER J S J. Geopolymerisation of multiple minerals.Miner. Eng., 2002, 15: 1131-1139. |
[16] | FERNANDEZ-JIMENEZ A, PALOMO A, CRIADO M.Microstructure development of alkali-activated fly ash cement: a descriptive model.Cem. Concr. Res., 2005, 35: 1204-1209. |
[17] | FERNANDEZ-JIMENEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater., 2006, 91: 111-119. |
[18] | BELLMANN F, STARK J.Activation of blast furnace slag by a new method.Cem. Concr. Res., 2009, 39: 644-650. |
[19] | CHENG T W, CHIU J P.Fire-resistant geopolymer produced by granulated blast furnace slag.Miner. Eng., 2003, 16: 205-210. |
[20] | SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali- activated ground granulated balst furnace slag. J. Mater. Sci., 2000, 35: 249-257. |
[21] | ZHANG Y J, ZHAO Y L, LI H H, et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci., 2008(43): 7141-7147. |
[22] | XU H, VAN DEVENTER J S J. The geopolymerisation of aluminosilicate minerals.Int. J. Miner. Process., 2000, 59(3): 247-266. |
[23] | YIP C K, VAN DEVENTER J S J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.J. Mater. Sci., 2003, 38: 3851-3860. |
[24] | YIP C K, LUKEY G C, VAN DEVENTER J S J. Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials.Ceram. Trans., 2004, 153: 187-209. |
[25] | ZHANG Y J, WANG Y C, XU D L, et al. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater. Sci. Eng. A, 527: 2010, 6574-6580. |
[26] | ZHANG Y J, LI S, WANG Y C, et al. Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Crystal. Solids, 2012, 358: 620-624. |
[27] | ZHANG Y J, LI S, XU D L, et al. A novel method for preparation of organic resins reinforced geopolymer composites. J. Mater. Sci., 2010, 45: 1189-1192. |
[28] | YIP C K, LUKEY G C, VAN DEVENTER J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.Cem. Concr. Res., 2005, 35: 1688-1697. |
[29] | GORETTA K C, CHEN N, GUTIERREZ-MORA F, et al. Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag. Wear, 2004, 256: 714-719. |
[30] | OH J E, MONTEIRO P J M, JUN S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res., 2010, 40: 189-196. |
[31] | KOMNITSAS K, ZAHARAKI D, PERDIKATSIS V.Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers.J. Hazard. Mater., 2009, 161: 760-768. |
[32] | PAN Z, LI D, YU J, et al. Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cem. Concr. Res., 2003, 33: 1437-1441. |
[33] | ACHECO-TORGAL F, CASTRO-GOMES J, JALALI S.Properties of tungsten mine waste geopolymeric binder.Constr. Build. Mater., 2008, 22: 1201-1211. |
[34] | RODRIGUEZ E D, BERNAL S A, PROVIS J L, et al. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109: 493-502. |
[35] | SINGH P S, BASTOW T, TRIGG M.Structural studies of geopolymers by 29Si and 27Al MAS-NMR.J. Mater. Sci., 2005, 40: 3951-3961. |
[36] | DUXSON P, LUKEY G C, VAN DEVENTER J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity.Ind. Eng. Chem. Res., 2006, 45(23): 7781-7788. |
[37] | WANG H, LI H, YAN F.Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE.Wear, 2005, 258(10): 1562-1566. |
[38] | NAIR B G, ZHAO Q, COOPER R F.Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications.J. Mater. Sci., 2007, 42: 3083-3091. |
[39] | BELL J L, GORDON M, KRIVEN W M.Use of geopolymeric cements as a refractory adhesive for metal and ceramic joins.Ceram. Eng. Sci. Proc., 2005, 26(3): 407-413. |
[40] | GARCIA-LODEIRO I, PALOMO A, FERNANDEZ-JIMENEZ A.Alkali-aggregate reaction in activated fly ash systems.Cem. Concr. Res., 2007, 37(2): 175-183. |
[41] | BAKHAREV T, SANJAYAN J, CHENG Y B.Resistance of alkali- activated slag concrete to acid attack.Cem. Concr. Res., 2003, 33: 1607-1611. |
[42] | SHI C, STEGEMANN J.Acid corrosion resistance of different cementing materials.Cem. Concr. Res., 2000, 30: 803-808. |
[43] | BAKHAREV T, SANJAYAN J G, CHENG Y B.Sulfate attack on alkali-activated slag concrete.Cem. Concr. Res., 2002, 32: 211-216. |
[44] | PALOMO A, BLANCO-VARELA M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res., 1999, 29(7): 997-1004. |
[45] | ROY D M, JIANG W, SILSBEE M.Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties.Cem. Concr. Res., 2000, 30: 1879-1884. |
[46] | PUERTAS F, AMAT T, FERNANDEZ-JIMENEZ A, et al. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res., 2003, 33: 2031-2036. |
[47] | GLASSER FP.Progress in the immobilization of radioactive wastes in cement, Cem. Concr. Res., 1992, 22: 201-216. |
[48] | VAN JAARSVELD J G S, VAN DEVENTER J S J, SCHWARTZMAN A. The potential use of geopolymeric materials to immobilize toxic metals: part II. Material and leaching characteristics.Miner. Eng., 1999, 12(1): 75-91. |
[49] | QIAN G, SUN D D, TAY J H.Immobilization of mercury and zinc in an alkali-activated slag matrix.J. Hazard. Mater., 2003, 101(1): 65-77. |
[50] | JAN D.Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali- activated slag binders.Cem. Concr. Res., 2002, 32(12): 1971-1979. |
[51] | SAZAMA P, BORTNOVSKY O, DEDECEK J, et al. Geopolymer based catalysts-new group of catalytic materials. Catal. Today, 2011, 164: 92-99. |
[52] | CASCA-TIRADO J R, MANZANO-RAMIREZ A, VILLASENOR- MORA C, et al. Incorporation of photoactive TiO2 in an aluminosilicate inorganic polymer by ion exchange. Microporous Mesoporous Mater., 2012, 153: 282-287. |
[53] | CASCA-TIRADO J R, MANZANO-RAMIREZ A, VAZQUEZ- LANDAVERDE P A, et al. Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound. Mater. Lett., 2014, 134: 222-224. |
[54] | CANDAMANO S, FRONTERA P, MACARIO A, et al. Preparation and characterization of active Ni-supported catalyst for syngas production. Chem. Eng. Res. Des., 2015, 96: 78-86. |
[55] | SHARMA S, MEDPELLI D, CHEN S, et al. Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Adv., 2015, 5: 65454-65461. |
[56] | ZHANG Y J, LIU L C, XU Y, et al. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. J. Hazard. Mater., 2012, 209-210: 146-150. |
[57] | KANG L, ZHANG Y J, WANG L L, et al. Alkali-activated steel slag-based mesoporous material as a new photocatalyst for degradation of dye from wastewater. Integr. Ferroelectr., 2015, 162: 8-17. |
[58] | AHMARUZZAMAN M.A review on the utilization of fly ash.Prog. Energy Combust. Sci., 2010, 36(3): 327-363. |
[59] | LI L, WANG S, ZHU Z.Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.J. Colloid Interface Sci., 2006, 300(1): 52-59. |
[60] | AL-ZBOONA K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution.J. Hazard. Mater., 2011, 188: 414-421. |
[61] | WANG S, LI L, ZHU Z H.Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater.J. Hazard. Mater., 2007, 139(2): 254-259. |
[62] | HUANG Y, HAN M.The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.J. Hazard. Mater., 2011, 193: 90-94. |
[63] | CHENG T W, LEE M L, KO M S, et al. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci., 2012, 56: 90-96. |
[64] | ZHANG Y J, LIU L C.Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater.Particuology, 2013, 11: 353-358. |
[65] | ZHANG Y J, LIU L C, NI, L L, et al. A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl. Catal. B, 2013, 138-139: 9-16. |
[66] | ZHANG Y J, CHAI Q.Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel.Fuel, 2014, 115: 84-87. |
[67] | ZHANG Y J, KANG L, LIU L C, et al. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance. Appl. Surf. Sci., 2015, 331: 399-406. |
[68] | ZHANG Y J, KANG L, SI H X, et al. A novel alkali-activated magnesium slag based nanocomposite for photocatalytic production of hydrogen. Integr. Ferroelectr., 2014, 154: 120-127. |
[69] | BUTLER M A, GINLEY D S.Prediction of flatband potentials at semiconductorelectrolyte interfaces from atomic electronegativities, J. Electrochem. Soc., 1978, 125: 228-232. |
[70] | XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals.Am. Mineral., 2000, 85: 543-556. |
[71] | ZHANG Y J, KANG L, LIU L C. Alkali-activated Cements for Photocatalytic Degradation of Organic Dyes. in: PACHECO- TORGAL F, LABRINCHA J A, Leonelli LEONELLI C, et al. Handbook of Alkali-activated Cements, Mortars and Concretes, UK: Woodhead Publishing, 2015: 729-777. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[8] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[9] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[10] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[11] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[12] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[13] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[14] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[15] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||