无机材料学报 ›› 2015, Vol. 30 ›› Issue (1): 9-16.DOI: 10.15541/jim20140175 CSTR: 32189.14.10.15541/jim20140175
陈爱兵, 于奕峰, 臧文伟, 齐国禄, 于运红, 李月彤
收稿日期:
2014-04-08
修回日期:
2014-06-16
出版日期:
2015-01-20
网络出版日期:
2014-12-29
作者简介:
陈爱兵(1978–), 男, 博士, 副教授. E-mail:chen_ab@163.com
基金资助:
CHEN Ai-Bing, YU Yi-Feng, ZANG Wen-Wei, QI Guo-Lu, YU Yun-Hong, LI Yue-Tong
Received:
2014-04-08
Revised:
2014-06-16
Published:
2015-01-20
Online:
2014-12-29
About author:
CHEN Ai-Bing. E-mail:chen_ab@163.com
Supported by:
摘要:
CO2作为温室气体, 其捕集和存储有着重要的现实意义。多孔碳材料掺杂N原子后可以极大地改变材料的表面化学性质, 增强表面碱性, 在CO2吸附领域具有广泛的应用。基于N掺杂最新研究进展, 本文系统地介绍了原位、后处理等掺N方法和不同孔道结构对CO2吸附分离或扩散传质的影响, 总结归纳了材料的物理结构参数、表面化学性质与CO2吸附分离性能的关系, 指出了各种制备方法存在的问题及解决的方法, 为高性能的CO2吸附剂的定向设计、制备以及工业化提供了理论参考。
中图分类号:
陈爱兵, 于奕峰, 臧文伟, 齐国禄, 于运红, 李月彤. 掺氮多孔碳在二氧化碳吸附分离中的应用[J]. 无机材料学报, 2015, 30(1): 9-16.
CHEN Ai-Bing, YU Yi-Feng, ZANG Wen-Wei, QI Guo-Lu, YU Yun-Hong, LI Yue-Tong. Nitrogen-doped Porous Carbon for CO2 Adsorption[J]. Journal of Inorganic Materials, 2015, 30(1): 9-16.
图 1 N原子在碳材料中的可能存在形式示意图[9]
Fig. 1 Possible positions of N atom in the carbon materials [9].(1-Anmio-N; 2-Pyrrolic; 3-Nitrosyl-N; 4-Pyridone; 5-Quaternary)
图2 EISA法添加双腈胺制备碳材料的合成机理图(a)及CO2/N2选择性吸附图(b)[16]
Fig. 2 Formation process of N-doped mesoporous carbon using dicyandiamide as an additive (a); CO2 and N2 adsorption isotherms (b)[16]
图 3 高压下[BMIm][C(CN)3]/[EMIm][B(CN)4]=1:2碳混合样品的CO2、N2吸附-脱附等温曲线[17]
Fig. 3 CO2 and N2 adsorption-desorption isotherms as a function of pressure of the carbons from [BMIm] [C(CN)3]/ [EMIm] [B(CN)4]=1:2[17]
图 4 CO2吸附量与氮掺杂和未氮掺杂的碳材料比表面积关系(1.013×105 Pa, 298 K), 氮含量在6wt%~7wt%[26]
Fig. 4 Relationships between the CO2 adsorption capacities (at 298 K and 1 .013×105 Pa) and the BET surface area of nitrogen- doped and undoped carbons. The N-doped carbons contain 6wt%-7wt% N[26]
图 5 介孔碳泡沫的合成示意图(a)和75℃下PEI浸渍介孔碳泡沫的CO2吸附动力学曲线(b)[35]
Fig. 5 Schematic illustration of the synthesis method of mesoporous carbon foams(a) and CO2 adsorption kinetics of the PEI-impregnated mesoporous carbon sorbent at 75℃(b)[35]
图 6 分级整块碳材料的SEM照片、N2吸附-脱附曲线和孔径分布图(a~d)和(e)光学照片[46]
Fig. 6 SEM images of hierarchical porous carbon and N2 adsorption-desorption and PSD (a-d) and optical images (e)[46]
Samples | Nitrogen source | Nitrogen content/wt% | Functionalities | Surface area /(m2·g-1) | CO2 capacity /(mmol·g-1) |
---|---|---|---|---|---|
N-doped microporous carbon [ | Imine-linked polymer | 5.58-8.74 | Pyridinic, quaternary | 263-366 | 1.95 |
N-doped mesoporous carbon[ | Melamine resin | -8.00 | Pyridinic, pyrrolic, quaternary | -750 | 1.80 |
KOH activated porous carbon[ | Polypyrrole | -10.14 | Pyridinic,quaternary | 1700 | 3.10 |
Organic amine grafting carbon[ | Glucose | NA | Amide, tertiary amines, primary amines | <10 | 4.10 |
Macro-micro hollow carbon spheres [ | Melamine | 14.80 | NA | 767 | 2.67 |
Sustainable biomass [ | Glgae | 1.1-4.7 | Pyridinic, pyrrolic, quaternary | 1300-2400 | 7.40 |
Template carbon [ | HNO3 | 6.73 | Pyridinic, pyrrolic, quaternary | 1979 | 4.30 |
N-doped activated carbon monoliths [ | Polyacrylonitrile | 1.80 | NA | 2501 | 5.14 |
表 1 不同掺氮碳材料对CO2的吸附能力比较
Table 1 Different nitrogen doped carbon materials for CO2 adsorption capacity
Samples | Nitrogen source | Nitrogen content/wt% | Functionalities | Surface area /(m2·g-1) | CO2 capacity /(mmol·g-1) |
---|---|---|---|---|---|
N-doped microporous carbon [ | Imine-linked polymer | 5.58-8.74 | Pyridinic, quaternary | 263-366 | 1.95 |
N-doped mesoporous carbon[ | Melamine resin | -8.00 | Pyridinic, pyrrolic, quaternary | -750 | 1.80 |
KOH activated porous carbon[ | Polypyrrole | -10.14 | Pyridinic,quaternary | 1700 | 3.10 |
Organic amine grafting carbon[ | Glucose | NA | Amide, tertiary amines, primary amines | <10 | 4.10 |
Macro-micro hollow carbon spheres [ | Melamine | 14.80 | NA | 767 | 2.67 |
Sustainable biomass [ | Glgae | 1.1-4.7 | Pyridinic, pyrrolic, quaternary | 1300-2400 | 7.40 |
Template carbon [ | HNO3 | 6.73 | Pyridinic, pyrrolic, quaternary | 1979 | 4.30 |
N-doped activated carbon monoliths [ | Polyacrylonitrile | 1.80 | NA | 2501 | 5.14 |
[1] | ROCHELLE G T.Amine scrubbing for CO2 capture. Science, 2009, 325(5948):1652-1654. |
[2] | CHOMAA J, JEDYNAKB K, JARONIECC M, et al.Microporosity development in phenolic resin-based mesoporouscarbons for enhancing CO2 adsorption at ambient conditions.Applied Surface Science, 2014, 289(2): 592-600. |
[3] | LUO J, PENG F, ZHENG W X, et al.Aerobic liquid-phase oxidation of ethyl benzene to acetophenone catalyzed by carbon nanotubes.ChemCatChem, 2013, 5(6):1578-1586. |
[4] | ALAM N, MOKAYA R, Evolution of optimal porosity for improved hydrogen storage in template zeolite-like carbons.Energy Environ. Sci., 2010, 3(11): 1773-1781. |
[5] | WANG J X, XUE C F, LV Y Y, et al.Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance.Carbon, 2011; 49(13): 4580-4588. |
[6] | CHANG H, JOO S H, PAK C.Synthesis and characterization of mesoporouscarbonfor fuel cell applications. J. Mater. Chem., 2007, 17(30): 3078-3088. |
[7] | WU Z X, PAUL A, ZHAO D Y, et.al. Post-enrichment of nitrogen in soft-templated ordered mesoporouscarbonmaterials for highly efficient phenol removal and CO2 capture.J. Mater. Chem., 2012, 22(22):11379-11389. |
[8] | LIU L, DENG Q F, YUAN Z Y, et.al. Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture.J. Mater. Chem., 2011, 21(40): 16001-16009. |
[9] | WANG X Q, LIU C G, DAI S, et al.Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A, 2013, 1(27):7920-7926. |
[10] | DARGE T C, ARENILLA S A, SNAPE C E.Preparation of carbon dioxide adsorbents from the chemical activation of urea- formaldehyde and melamine-formaldehyde resins.Fuel, 2007, 86(1/2): 22-31. |
[11] | NANDI M, OKADA K, UYAMA D H.Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation.Chem. Commun., 2012, 48(83): 10283-10285. |
[12] | ZHAO Y F, ZHAO L, HAN Y, et al.Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture.J. Mater. Chem., 2012, 22(37): 19726-19731. |
[13] | SEVILLA M, VIGÓN P V, FUERTES A B. N-doped polypyrrole-based porous carbons for CO2capture.Adv. Funct. Mater., 2011, 21(14): 2781-2787. |
[14] | YU J Y, GUO M Y, ZHU G S, et al.One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture.Carbon, 2014, 69(4): 502-514. |
[15] | FENG C M, LI H X, WAN Y.Fabrication of N-doped highly ordered mesoporous polymers and carbons.J. Nanosci. Nanotechnol, 2009, 9(2):1558-1563. |
[16] | WEI J, ZHOU D D, ZHAO D Y, et al.A Controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater., 2013, 23(18): 2322-2328. |
[17] | FULVIO P F, LEE J S, DAI S, et al.Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties.Phys. Chem. Chem. Phys., 2011, 13(30): 13486-13491. |
[18] | CHEN A B, YU Y F, LV H J, et al.Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors.J. Mater. Chem., 2013, 1(4): 1045-1047. |
[19] | CHEN A B, LIU C, YU Y F, et al.A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent.J. Hazard. Mater., 2014, 276(13): 192-199. |
[20] | PLAZA M G, PEVIDA C, ARENILLAS A, et al.CO2 capture by adsorption with nitrogen enriched carbons.Fuel, 2007, 86(14): 2204-2212. |
[21] | SONG J, SHEN W Z, WANG J G, et al.Superior carbon-based CO2 adsorbents prepared from poplar anthers.Carbon, 2014, 69(4): 255-263. |
[22] | SAYARI A, BELMABKHOUT Y.Stabilization of amine- containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc., 2010, 132(18): 6312-6314. |
[23] | WANG J C, LIU Q.An efficient one-step condensation and activationstrategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2 adsorption.Nanoscale, 2014, 6(8): 4148-4156. |
[24] | ZHANG Z.S, ZHOU J, QIAO S Z, et al. Critical role of small micropores in high CO2 uptake.Phys. Chem. Chem. Phys., 2013, 15(7): 2523-2529. |
[25] | ZHOU J, LI W, ZHUO S P, et al.Carbon dioxide adsorption performance of N-doped zeolite Y template carbons.RSC Adv., 2012, 2(1): 161-167. |
[26] | WANG L, YANG R T.Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping.J. Phys. Chem. C, 2012, 116(1): 1099-1106. |
[27] | MANGUN C L, BENAK K R, ECONOMY J, et al.Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon, 2001, 39(12): 1809-1820. |
[28] | SHEN W Z, ZHANG S C, FAN W B, et al.Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture.J. Mater. Chem., 2011, 21(36): 14036-14040. |
[29] | HAO G P, JIN Z Y, LU A H.Porous carbon nanosheets with precisely tunablethickness and selective CO2 adsorption properties.Energy Environ. Sci., 2013, 6(12): 3740-3747. |
[30] | CHANDRA V, YU S U, KIM K S, et al.Highly selective CO2 capture on N-doped carbon produced by chemicalactivation of polypyrrole functionalized graphene sheets.Chem. Commun., 2012, 48(5): 735-737. |
[31] | SHEN Y M, BAI J F.A new kind CO2/CH4 separation material: open ended nitrogen doped carbon nanotubes formed by direct pyrolysis of metal organicframeworks.Chem. Commun., 2010, 46(8): 1308-1310. |
[32] | ZHAO Y X, SEREDYCH M, BANDOSZ T J.Superior performance of copper based MOF and aminatedgraphite oxide composites as CO2 adsorbents at room temperature.ACS Appl. Mater Interfaces, 2013, 5(11): 4951-4959. |
[33] | BABARAO R, DAI S, JIANG D E.Nitrogen-doped mesoporouscarbon for carbon capture-a molecular simulation study.J. Phys. Chem. C, 2012, 116(12):7106-7110. |
[34] | YU J Y, GUO M Y, ZHU G S, et al.Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol- melamine-formaldehyde resin.Microporous Mesoporous Mater., 2014, 190(8): 117-127. |
[35] | FU L L, QI G G, GIANNELIS E P, et al.Facile synthesis and application of a carbon foam with large mesopores.Phys. Chem. Chem. Phys., 2013, 15(44): 19134-19137. |
[36] | WHITE R J, ANTONIETTI M, TITIRICI M M, et al.Naturally inspired nitrogen doped porous carbon. J. Mater. Chem., 2009, 19(45): 8645-8650. |
[37] | OLEJNICZAK A, LEZANSKA M, LUKASZEWICZA J P, et al.Novel nitrogen-containing mesoporous carbons prepared from chitosan.J. Mater. Chem. A, 2013, 1(31): 8961-8967. |
[38] | SEVILLA M, FALCO C, FUERTES A B, et al.High-performance CO2 adsorbents from algae.RSC Adv., 2012, 2(33): 12792-12797. |
[39] | WOOD K N, HAYREA R O, PYLYPENKO S.Recent progress on nitrogen·carbon structures designed for use in energy and sustainability applications.Energy Environ. Sci., 2014, 7: 1212-1249. |
[40] | WANG J C, LIU Q.An ordered mesoporous aluminosilicateoxynitridetemplate to prepare N-incorporated ordered mesoporous carbon.J. Phys. Chem. C, 2007, 111(20): 7266-7272. |
[41] | YANG H W, YUAN Y Z, EDMAN TSANG S C. Nitrogen- enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chemical Engineering Journal, 2012, 185-186(5): 374-379. |
[42] | LI Q, YANG J P, ZHAO D Y, et al.Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2capture.Nano Res., 2010, 3(9): 632-642. |
[43] | WILKE A, WEBER J.Hierarchical nanoporous melamine resin sponges with tunable porosity-porosity analysis and CO2 adsorption properties.J. Mater. Chem., 2011, 21(14): 5226-5229. |
[44] | GUTIERREZ M C, CARRIAZO D, MONTE F D, et al.Deep eutectic solvents as both precursors and structure directing agents in thesynthesis of nitrogen doped hierarchical carbons highly suitable for CO2.capture.Energy Environ. Sci., 2011, 4(11): 3535-3544. |
[45] | HAO G P, LI W C, LU A H.Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with ahexagonal array of mesopores.Carbon, 2011, 49(12): 3762-3772. |
[46] | HAO G P, LI W C, LU A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc., 2011,133(29): 11378-11388. |
[47] | ZHU B J, LI K X, GUO Z X, et al.Nitrogen-enriched and hierarchically porous carbon macro-spheres-ideal for large-scale CO2 Capture.J. Mater. Chem. A, 2014, 2(15): 5481-5489. |
[48] | WANG J C, SENKOVSKA I, KASKEL S, et al.Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.ACS Appl. Mater. Interfaces, 2013, 5(8): 3160-3167. |
[49] | CHEN H C, SUN F G, LONG D H, et al.Nitrogen doping effects on the physical and chemical properties of mesoporous carbon. J. Phys. Chem. C, 2013, 117(16): 8318-8328. |
[50] | TITRIRICI M M, WHITE R J, ZHAO L.Nitrogen-doped hydrothermal carbons.Green, 2012, 2(1): 25-40. |
[51] | FENG S S, LI W, ZHAO D Y, et al.Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture.Chem. Commun., 2014, 50(3): 329-331. |
[52] | MA X Y, CAO M H, HU C W, et al.Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A, 2013, 1(3): 913-918. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||