Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (1): 11-18.DOI: 10.3724/SP.J.1077.2012.00011
• Orginal Article • Previous Articles Next Articles
WANG Wen-Zhong, SHANG Meng, YIN Wen-Zong, REN Jia, ZHOU Lin
Received:
2011-08-26
Revised:
2011-09-30
Published:
2012-01-09
Online:
2011-12-19
Supported by:
CLC Number:
WANG Wen-Zhong, SHANG Meng, YIN Wen-Zong, REN Jia, ZHOU Lin. Recent Progress on the Bismuth Containing Complex Oxide Photocatalysts[J]. Journal of Inorganic Materials, 2012, 27(1): 11-18.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 (A) UV-Vis diffuse reflectance spectra of the Bi2WO6 nanosheet; (B) Temporal change of UV-Vis spectrum of RhB aqueous solution; (C) Comparison of the photocatalytic activities of different Bi2WO6 and blank test (the Bi2WO6 used for comparison are prepared by solid-state reaction, traditional hydrothermal, and hydrothermal method using Bi(NH3)2C6H7O7 as Bi source, respectively; (D) Cycling runs in the photocatalytic degradation of RhB in the presence of Bi2WO6 nanosheet under visible-light[19]
Fig. 4 (A) TEM image of carbon spheres; (B) SEM image of Bi2WO6 nanocages; (C) The photo-degradation efficiencies of RhB as a function of irradiation time by different photocatalysts; (D) The temporal evolution of the spectra during the photodegradation of RhB mediated by the Bi2WO6 nanocages under visible light (λ > 420 nm)[26]
Fig. 5 SEM images of Bi2WO6 nanofibers before calcination (a) and after calcinations (b); (c) photocatalytic degradation of CH3CHO (1×10-4) under visible-light (λ >420 nm); (d) Comparison of the photocatalytic degradation of NH4+/NH3 by different samples[29]
Fig. 6 (A) Images of colonies on an agar plates: (a) E. coli suspension before reaction; (b) E. coli suspension containing Bi2WO6 in the dark; (c) E. coli suspension without Bi2WO6 under visible light irradiation; (d) E. coli suspension containing Bi2WO6 under visible light irradiation. (B) Survival ratio of E. coli in aqueous dispersions: (a) Bi2WO6 in the dark; (b) No catalyst; and (c) Bi2WO6 under visible light irradiation. (C) TEM images of E. coli irradiated by visible light with Bi2WO6 (a) E. coli before reaction; (b) E. coli treated for 2 h[34]
Fig. 8 SEM image (A) and XRD patterns (B) of UR-BiVO4 when ultrasonic time was 30 min (a), 60 min (b) and by solid state reaction; (C) UV-Vis diffuse reflectance spectra of UR-BiVO4 and SSR-BiVO4 samples, Inset: plots of ?αhv? versus photon energy (hv); (D) Changes of UV-Vis spectra of UR-BiVO4 suspended MO solution as a function of irradiation time. Inset: MO concentration changes over UR-BiVO4, SSR-BiVO4 and P25[44]
Fig. 9 (A) TEM of m-BiVO4 hollow spheres; (B) Comparison of the photodegradation of RhB by HS-BVO (a), AM-BVO (b), and SSR-BVO (c) under visible light (λ>420 nm)[45]
Fig. 10 (A) SEM image of Bi2MoO6 hollow spheres; (B) Photocatalytic degradation of phenol over HS-BMO (a), SSR- BMO (b) and photolysis (c) under visible-light (λ>420 nm) [51]
Fig. 11 Photodegradation of RhB (A), phenol (B) and disinfection (C), ((b) Bi2MoO6 under the irradiation for 6 h; (c) control; (d) Bi2MoO6 only; (e) 3W blue LED only) by Bi2MoO6 under 3W blue LED[52]
[1] | Stoltzfus M W, Woodward P M, Seshadri R, et al. Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. Inorg. Chem., 2007, 46(10): 3839-3850. |
[2] | Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett., 2004, 33(12): 1534-1539. |
[3] | Ricote J, Pardo L, Castro A, et al. Study of the process of mechanochemical activation to obtain aurivillius oxides with n=1. J. Solid State Chem., 2001, 160(1): 54-61. |
[4] | Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett., 1999, 28(10): 1103-1104. |
[5] | Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett., 2004, 92(1/2): 53-56. |
[6] | Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B, 2005, 109(47): 22432-22439. |
[7] | Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Edit., 2004, 43(34): 4463-4466. |
[8] | 谢立进. 铋系复合氧化物纳米晶光催化材料的制备及表征. 青岛: 中国海洋大学硕士论文, 2006. |
[9] | Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater., 2005, 17(13): 3537-3545. |
[10] | Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol., 2007, 41(17): 6234-6239. |
[11] | Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol., 2008, 42(6): 2085-2091. |
[12] | Tian G H, Chen Y J, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J. Mater. Chem., 2011, 21(3): 887-892. |
[13] | Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal. Today, 2008, 131(1-4): 15-20. |
[14] | Chen Z, Qian L W, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. Crystengcomm., 2010, 12(7): 2100-2106. |
[15] | Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation. Environ. Sci. Technol., 2010, 44(17): 6843-6848. |
[16] | Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small, 2007, 3(9): 1618-1625. |
[17] | Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Phys. Chem. Chem. Phys., 2011, 13(7): 2887-2893. |
[18] | Shang M, Wang W Z, Zhang L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C, 2009, 113(13): 14727-14731. |
[19] | Shang M, Wang W Z, Sun S M, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. J. Phys. Chem. C, 2008, 112(28): 10407-10411. |
[20] | Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem., 2007, 17(24): 2526-2532. |
[21] | Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J. Hazard. Mater., 2010, 177(1/2/3): 1013-1018. |
[22] | Zhao W, Chen C, Li X, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst. J. Phys. Chem. B, 2002, 106(19): 5022-5028. |
[23] | Zhao Y, Xie Y, Zhu X, et al. Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries. Chem. Eur. J., 2008, 14(5): 1601-1606. |
[24] | Butler M A. Photoelectrolysis and physical-properties of semiconducting electrode WO3. J. Appl. Phys., 1977, 48(5): 1914-1920. |
[25] | Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1): 49-68. |
[26] | Shang M, Wang W Z, Xu H L. New Bi2WO6 Nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth & Design, 2009, 9(2): 991-996. |
[27] | Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J. Am. Chem. Soc., 2007, 129(27): 8406-8407. |
[28] | Chen C C, Zhao W, Li J, et al. Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol., 2002, 36(16): 3604-3611. |
[29] | Shang M, Wang W Z, Ren J, et al. A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. J. Mater. Chem., 2009, 19(34): 6213-6218. |
[30] | Amano F, Yamakata A, Nogami K, et al. Visible light responsive pristine metal oxide photocatalyst: Enhancement of activity by crystallization under hydrothermal treatment. J. Am. Chem. Soc., 2008, 130(52): 17650-17651. |
[31] | Ohtani B. Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem. Lett., 2008, 37(3): 217-229. |
[32] | Zhu X D, Castleberry S R, Nanny M A, et al. Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environ. Sci. Technol., 2005, 39(10): 3784-3791. |
[33] | Lo S L, Ou H H, Liao C H, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environ. Sci. Technol., 2008, 42(12): 4507-4512. |
[34] | Ren J, Wang W Z, Zhang L, et al. Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light. Catal. Commun., 2009, 10(14): 1940-1943. |
[35] | Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc., 1999, 121(49): 11459-11467. |
[36] | Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater., 2001, 13(12): 4624-4628. |
[37] | Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett., 1998, 53(3/4): 229-230. |
[38] | Kohtani S, Koshiko M, Kudo A. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B, 2003, 46(3): 573-586. |
[39] | Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catal. Commun., 2005, 6(3): 185-189. |
[40] | Kohtani S, Tomohiro M, Tokumura K, et al. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts. Appl. Catal. B-Environ., 2005, 58(3/4): 265-272. |
[41] | Guan M L, Ma D K, Hu S W, et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem., 2011, 50(3): 800-805. |
[42] | Long M C, Cai W M, Cai J, et a1. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B, 2006, 110(41): 20211-20216. |
[43] | Xie B P, Zhang H X, Cai P X, et a1. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere, 2006, 63(6): 956-963. |
[44] | Zhou L, Wang W Z, Liu S W, et al. A sonochemical route to visible- light-driven high-activity BiVO4 photocatalyst. J. Molec. Catal. A-Chem., 2006, 252(1/2): 120-124. |
[45] | Yin W Z, Wang W Z, Shang M, et al. BiVO4 hollow nanospheres: anchoring synthesis, growth mechanism, and their application in photocatalys 8s. Eur. J. Inorg. Chem., 2009, 2009(20/30): 4379-4384. |
[46] | Xie H D, Shen D Z, Wang X Q, et al. Microwave hydrothermal synthesis and visible-light photocatalytic activity of v-Bi2MoO6 nanoplates. Mater. Chem. Phys., 2008, 110(2/3): 332-336. |
[47] | Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B, 2006, 110(36): 17790-17797. |
[48] | Zhang L W, Xu T G, Zhao X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B-Environ., 2010, 98(3/4): 138-146. |
[49] | Belver C, Adan C, Fernandez-Garcia M. Photocatalytic behaviour of Bi2MoO6 polymetalates for rhodamine B degradation. Catal. Today, 2009, 143(3/4): 274-281. |
[50] | Andersson M, Osterlund L, Ljungstrom S, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of micro- emulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B, 2002, 106(41): 10674-10679. |
[51] | Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation. Catal. Commun., 2010, 11(7): 647-650. |
[52] | 任 佳. 新型纳米可见光催化材料的合成及其环境净化性能研究. 中国科学院研究生院博士论文, 2011. |
[54] | 第一作者学术成就介绍:王文中, 男, 博士, 中国科学院上海硅酸盐研究所研究员, 中科院“百人计划”. 主要从事以铋基复合氧化物为主的可见光催化材料的设计、合成、光催化机理及其在环境净化方面的应用等研究工作. 在Angew. Chem. Int. Ed.等SCI期刊上发表论文90篇, 被引用2200余次, h因子26, 申请发明专利10余项. 曾获2007、2008、2009、2011年上海硅酸盐研究所优秀研究生指导教师, 2009年中科院朱李月华优秀教师, 2009年中科院优秀研究生指导教师, 2010年中国科学院上海分院第二届杰出青年科技创新人才. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||