Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (7): 673-680.DOI: 10.15541/jim20150641
• Orginal Article • Next Articles
XING Wei-Wei1,2, ZHANG Chen-Xiao1, FAN Shang-Chun1,2, LI-Cheng1
Received:
2015-12-21
Revised:
2016-01-30
Published:
2016-07-20
Online:
2016-06-22
Supported by:
CLC Number:
XING Wei-Wei, ZHANG Chen-Xiao, FAN Shang-Chun, LI-Cheng. Research Progress on Resonant Characteristics of Graphene[J]. Journal of Inorganic Materials, 2016, 31(7): 673-680.
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[2] | STOLYAROVA E, RIM K T, RYU S, et al.High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface.Proceedings of the National Academy of Sciences, 2007, 104(22): 9209-9212. |
[3] | SCARPA F, ADHIKARI S, GIL A J, et al.The bending of single layer graphene sheets: the lattice versus continuum approach.Nanotechnology, 2010, 21(12): 125702. |
[4] | DRESSELHAUS M S, DRESSELHAUS G, SAITO R.Physics of carbon nanotubes.Carbon, 1995, 33(7): 883-891. |
[5] | BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets.Science, 2007, 315(5811): 490-493. |
[6] | GEIM A K.Graphene: status and prospects.Science, 2009, 324(5934): 1530-1534. |
[7] | ROBINSON J T, ZALALUTDINOV M, BALDWIN J W, et al.Wafer-scale reduced graphene oxide films for nanomechanical devices.Nano Lett., 2008, 8(10): 3441-3445. |
[8] | HUTCHINSON A B, TRUITT P A, SCHWAB K C, et al.Dissipation in nanocrystalline-diamond nanomechanical resonators.Appl. Phys. Lett., 2004, 84(6): 972-974. |
[9] | SEKARIC L, PARPIA J M, CRAIGHEAD H G, et al.Nanomechanical resonant structures in nanocrystalline diamond.Appl. Phys. Lett., 2002, 81(23): 4455-4457. |
[10] | GARCIA-SANCHEZ D, VAN DER ZANDE A M, PAULO A S, et al. Imaging mechanical vibrations in suspended graphene sheets.Nano Lett., 2008, 8(5): 1399-1403. |
[11] | CHEN C, ROSENBLATT S, BOLOTIN K I, et al.Performance of monolayer graphene nanomechanical resonators with electrical readout.Nature Nanotech., 2009, 4(12): 861-867. |
[12] | ZANDE A M, BARTON R A, ALDEN J S, et al.Large-scale arrays of single-layer graphene resonators.Nano Lett., 2010, 10(12): 4869-4873. |
[13] | TIMOSHENKO S, WOINOWSKY-KRIEGER S.Theory of Plates and Shells. New York: McGraw-hill, 1959. |
[14] | BAUCHAU O A, CRAIG J I.Structural Analysis: with Applications to Aerospace Structures. Netherlands: Springer, 2009, 819-821. |
[15] | REDDY J N.A general non-linear third-order theory of plates with moderate thickness.Int. J. Solids Struct., 1990, 25(6): 677-686. |
[16] | MURMU T, PRADHAN S C.Vibration analysis of nano-single- layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory.J. Appl. Phys., 2009, 105(6): 064319. |
[17] | ARASH B, WANG Q.Vibration of single-and double-layered graphene sheets.J. Nanotechnol. Eng. Med. , 2011, 2(1): 011012. |
[18] | CHOWDHURY R, ADHIKARI S, SCARPA F, et al.Transverse vibration of single-layer graphene sheets.J. Phys. D: Appl. Phys., 2011, 44(20): 205401. |
[19] | SAMAEI A T, ALIHA M R M, MIRSAYAR M M. Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale.Mater. Phys. Mech., 2015, 22: 125-135. |
[20] | ANSARI R, SAHMANI S, ARASH B.Nonlocal plate model for free vibrations of single-layered graphene sheets.Phys. Lett. A, 2010, 375(1): 53-62. |
[21] | SHEN L E, SHEN H S, ZHANG C L.Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments.Comp. Mater. Sci., 2010, 48(3): 680-685. |
[22] | CHANG W J, LEE H L.Mass detection using a double-layer circular graphene-based nanomechanical resonator.J. Appl. Phys., 2014, 116(3): 034303. |
[23] | ERINGEN A C.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J. Appl. Phys., 1983, 54(9): 4703-4710. |
[24] | MOHAMMADIMEHR M, NAJAFABADI M M M, NASIRI H, et al. Surface Stress Effects on the Free Vibration and Bending Analysis of the Nonlocal Single-layer Graphene Sheet Embedded in an Elastic Medium Using Energy Method. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 1740349914559042. |
[25] | FAZELZADEH S A, GHAVANLOO E.Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments.Acta. Mech. Sinica., 2014, 30(1): 84-91. |
[26] | KARLIČIĆ D, KOZIĆ P, ADHIKARI S, et al. Nonlocal mass-nanosensor model based on the damped vibration of single- layer graphene sheet influenced by in-plane magnetic field.Int. J. Mech. Sci., 2015, 96: 132-142. |
[27] | AKGÖZ B, CIVALEK Ö. Free vibration analysis for single- layered graphene sheets in an elastic matrix via modified couple stress theory.Mater. Design., 2012, 42: 164-171. |
[28] | TADMOR E B, ORTIZ M, PHILLIPS R.Quasicontinuum analysis of defects in solids.Philos. Mag. A, 1996, 73(6): 1529-1563. |
[29] | FRIESECKE G, THEIL F.Convexity conditions and existence theorems in nonlinear elasticity.J. Nonlinear Sci., 2002, 12: 445-478. |
[30] | STEINMANN P, ELIZONDO A, SUNYK R.Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling.Modell. Simul. Mater. Sci. Eng., 2007, 15(1): S271. |
[31] | RAPPÉ A K, CASEWIT C J, COLWELL K S, et al.UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations.J. Am. Chem. Soc., 1992, 114(25): 10024-10035. |
[32] | CORNELL W D, CIEPLAK P, BAYLY C I, et al.A second generation force field for the simulation of proteins, nucleic acids, and organic molecules.J. Am. Chem. Soc., 1995, 117: 5179-5197. |
[33] | LI C, CHOU T W.A structural mechanics approach for the analysis of carbon nanotubes.Int. J. Solid Struct., 40(10): 2487-2499. |
[34] | GELIN B R.Molecular Modeling of Polymer Structures and Properties. New York: Gardner, 1994. |
[35] | BELYTSCHKO T, XIAO S P, SCHATZ G C, et al.Atomistic simulations of nanotube fracture.Phys. Rev. B, 2002, 65(23): 235430. |
[36] | SAKHAEE-POUR A, AHMADIAN M T, VAFAI A.Potential application of single-layered graphene sheet as strain sensor.Solid State Commun., 2008, 147(7): 336-340. |
[37] | ROUHI S, ANSARI R.Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets.Physica E, 2012, 44(4): 764-772. |
[38] | BAYKASOGLU C, MUGAN A.Dynamic analysis of single-layer graphene sheets.Comp. Mater. Sci., 2012, 55: 228-236. |
[39] | ODEGARD G M, GATES T S, WISE K E, et al.Constitutive modeling of nanotube-reinforced polymer composites.Comp. Sci. Technol., 2003, 63(11): 1671-1687. |
[40] | REDDY C D, RAJENDRAN S, LIEW K M.Equilibrium configuration and continuum elastic properties of finite sized graphene.Int. J. Nanosci., 2006, 17(3): 864. |
[41] | SCARPA F, ADHIKARI S, PHANI A S.Effective elastic mechanical properties of single layer graphene sheets.Nanotechnology, 2009, 20(6): 065709. |
[42] | GEORGANTZINOS S K, GIANNOPOULOS G I, ANIFANTIS N K.An efficient numerical model for vibration analysis of single- walled carbon nanotubes.Comput. Mech., 2009, 43(6): 731-741. |
[43] | MAHMOUDINEZHAD E, ANSARI R.Vibration analysis of circular and square single-layered graphene sheets: An accurate spring mass mode.Physica E, 2013, 47: 12-16. |
[44] | KIM M H, KIM D, CHOI J B, et al.Vibrational characteristics of graphene sheets elucidated using an elastic network model.Phys. Chem. Chem. Phys., 2014, 16(29): 15263-15271. |
[45] | TSIAMAKI A S, GEORGANTZINOS S K, ANIFANTIS N K.Monolayer graphene resonators for mass detection: a structural mechanics feasibility study.Sensor. Actuat. A-Phys., 2014, 217: 29-38. |
[46] | ATALAYA J, ISACSSON A, KINARET J M.Continuum elastic modeling of graphene resonators.Nano Lett., 2008, 8(12): 4196-4200. |
[47] | DAI M D, KIM C W, EOM K.Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection.Nanoscale Res. Lett., 2012, 7(1): 1-10. |
[48] | VAN LIER G, VAN ALSENOY C, VAN DOREN V, et al.Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem.Phys. Lett., 2000, 326(1): 181-185. |
[49] | Kudin K N, Scuseria G E, Yakobson B I.C2F, BN, and C nanoshell elasticity from ab initio computations.Phys. Rev. B, 2001, 64(23): 235406. |
[50] | LIU F, MING P, LI J.Ab initio calculation of ideal strength and phonon instability of graphene under tension.Phys. Rev. B, 2007, 76(6): 064120. |
[51] | GAO Y, HAO P.Mechanical properties of monolayer graphene under tensile and compressive loading.Physica E, 2009, 41(8): 1561-1566. |
[52] | RASULI R, AHADIAN M M.Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory.Nanotechnology, 2010, 21(18): 185503. |
[53] | ZAKHARCHENKO K V, KATSNELSON M I, FASOLINO A.Finite temperature lattice properties of graphene beyond the quasiharmonic approximation.Phys. Rev. Lett., 2009, 102(4): 046808. |
[54] | CHEN S, CHRZAN D C.Monte Carlo simulation of temperature- dependent elastic properties of graphene.Phys. Rev. B, 2011, 84(19): 195409. |
[55] | ALDER B J, WAINWRIGHT T E.Phase transition for a hard sphere system.J. Chem. Phys., 1957, 27(5): 1208. |
[56] | TERSOFF J.New empirical approach for the structure and energy of covalent systems.Phys. Rev. B, 1988, 37(12): 6991. |
[57] | BRENNER D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.Phys. Rev. B, 1990, 42(15): 9458. |
[58] | BRENNER D W, SHENDEROVA O A, HARRISON J A, et al.A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons.J. Phys.: Condens. Matter., 2002, 14(4): 783. |
[59] | STUART S J, TUTEIN A B, HARRISON J A.A reactive potential for hydrocarbons with intermolecular interactions.J. Chem. Phys., 2000, 112(14): 6472-6486. |
[60] | GU F, ZHANG J H, YANG L J, et al. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Phys. Sin., 2011, 60(5): 523-531. |
[61] | LI Y, QIU X M, YANG F, et al.Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors.Nanotechnology, 2008, 19(16): 165502. |
[62] | KANG J W, KIM H W, KIM K S, et al.Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator.Curr. Appl. Phys., 2013, 13(4): 789-794. |
[63] | 纪翔. 石墨烯纳米带谐振特性的基础研究. 西安: 西安电子科技大学, 2013. |
[64] | KWON O K, KIM K S, PARK J, et al.Molecular dynamics modeling and simulations of graphene-nanoribbon-resonator-based nanobalance as yoctogram resolution detector.Comp. Mater. Sci., 2013, 67: 329-333. |
[65] | KWON, OH KUEN, HO JUNG HWANG, et al. Molecular dynamics simulation study on cross-type graphene resonator. Comp. Mater. Sci., 2014, 82: 280-285. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
[14] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[15] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||