无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 617-622.DOI: 10.15541/jim20210549
魏子钦1,2(), 夏翔2, 李勤2, 李国荣2, 常江1,2(
)
收稿日期:
2021-08-28
修回日期:
2021-10-12
出版日期:
2022-06-20
网络出版日期:
2021-11-12
通讯作者:
常 江, 研究员. E-mail: jchang@mail.sic.ac.cn作者简介:
魏子钦(1996-), 男, 硕士研究生. E-mail: 1149057072@qq.com
基金资助:
WEI Ziqin1,2(), XIA Xiang2, LI Qin2, LI Guorong2, CHANG Jiang1,2(
)
Received:
2021-08-28
Revised:
2021-10-12
Published:
2022-06-20
Online:
2021-11-12
Contact:
CHANG Jiang, professor. E-mail: jchang@mail.sic.ac.cnAbout author:
WEI Ziqin (1996–), male, Master candidate. E-mail: 1149057072@qq.com
Supported by:
摘要:
压电材料产生的电信号能够促进成骨细胞增殖分化, 但不具有良好的诱导矿化能力; 生物活性材料在生理环境下能够诱导类骨羟基磷灰石的沉积, 但又不能产生电信号促进成骨。因此, 开发出一种既能产生电信号, 又能诱导矿化沉积的复合生物活性压电材料, 具有重要意义。本研究以钛酸钡为压电组分, 以硅酸钙为生物活性组分, 采用固相烧结法制备了钛酸钡/硅酸钙复合生物活性压电陶瓷, 测试了压电性能, 并用体外矿化实验评价了诱导矿化能力。硅酸钙复合含量达到30%时, 复合陶瓷仍具有一定的压电性能(d33=4 pC·N-1), 并且能够在模拟体液中诱导磷酸钙沉积。钛酸钡与硅酸钙的复合能够同时具有压电性和生物活性, 为骨修复材料提供了新的选择。
中图分类号:
魏子钦, 夏翔, 李勤, 李国荣, 常江. 钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J]. 无机材料学报, 2022, 37(6): 617-622.
WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 617-622.
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
表1 复合陶瓷的原料组成
Table 1 Raw material composition of the composite ceramics
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
表2 复合陶瓷的压电常数d33
Table 2 Piezoelectric constant d33 of composite ceramics
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
图3 复合陶瓷的压电性能表征
Fig. 3 Characterization of piezoelectric properties of composite ceramics BT; (b) 0.9BT0.1CS; (c) 0.8BT0.2CS; (d) 0.7BT0.3CS; (e) 0.6BT0.4CS; (f) CS; (g) Variation trend of hysteresis loop; (h) Piezoelectric constant Colorful figures are available on website
图4 体外矿化表征
Fig. 4 Characterization of in vitro mineralization (a-h) SEM images of different ceramics soaked in SBF for 0 and 14 d; (i-h) EDS spectra of different ceramics soaked in SBF for 14 d SBF: Simulated body fluid
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
表3 样品矿化14 d后的表面元素组成
Table 3 Surface element composition of sample after 14 d mineralization
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
[1] |
ANTALYA H, JOHANNA B, RUSTOM L E, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 2018, 180: 143-162.
DOI URL |
[2] |
LOBB D C, DEGEORGE B R, CHHABRA A B. Bone graft substitutes: current concepts and future expectations. The Journal of Hand Surgery, 2019, 44(6): 497-505.
DOI URL |
[3] |
MAAZOUZ Y, CHIZZOLA G, DOBELIN N, et al. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 2021, 275: 120912.
DOI URL |
[4] |
HENCH L L, POLAK J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014-1017.
DOI URL |
[5] |
FUKADA E, YASUDA I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 1957, 12(10): 1158-1162.
DOI URL |
[6] |
BASSETT C A L, BECKER R O. Generation of electric potentials by bone in response to mechanical stress. Science, 1962, 137(3535): 1063-1064.
PMID |
[7] |
FUKADA E, YASUDA I. Piezoelectric effects in collagen. Japanese Journal of Applied Physics, 1964, 3(8): 117-121.
DOI URL |
[8] |
PARK J B, RECUM A F V, KENNER G H, et al. Piezoelectric ceramic implants-a feasibility study. Journal of Biomedical Materials Research, 1980, 14(3): 269-277.
DOI URL |
[9] | ATTILIO M, JONATHAN B, GIUSEPPE D V, et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces, 2015, 7(46): 25574-25579. |
[10] |
BUSUIOC C, OLARET E, STANCU I C, et al. Electrospun fibre webs templated synthesis of mineral scaffolds based on calcium phosphates and barium titanate. Nanomaterials, 2020, 10: 772.
DOI URL |
[11] | KHARE D, BASU B, DUBEY A K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020, 258: 120280-1-25. |
[12] |
WEINER S, ADDADI L. Crystallization pathways in biomineralization. Annual Review of Materials Research, 2011, 41: 21-40.
DOI URL |
[13] |
REZNIKOV N, STEELE J A M, FRATZL P, et al. A materials science vision of extracellular matrix mineralization. Nature Reviews Materials, 2016, 1(8): 16041.
DOI URL |
[14] |
WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1): 29-39.
DOI URL |
[15] | LIN K L, CHANG J, WANG Z. Fabrication and the characterisation of the bioactivity and degradability of macroporous calcium silicate bioceramics in vitro. Journal of Inorganic Materials, 2005, 20(3): 692-698. |
[16] |
LIU X Y, DING C X, WANG Z Y. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22(14): 2007-2012.
DOI URL |
[17] |
WANG X, ZHOU Y, XIA L, et al. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. Biointerfaces, 2015, 126: 358-366.
DOI URL |
[18] |
WANG S G, XU Y C, ZHOU J, et al. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate- based bioceramic. Bioactive Materials, 2017, 2(1): 10-18.
DOI URL |
[19] |
KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907-2915.
DOI URL |
[20] | LI H T, ZHANG B P, WEN J B, et al. Influences of sintering temperature on structure and properties of Cu-doped lead-free LNKN ceramics. Journal of Functional Materials, 2011, 42(S5): 931-934. |
[21] |
ZHANG S, YU F, GREEN D J. Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 2011, 94(10): 3153-3170.
DOI URL |
[22] |
TANG Y, WU C, WU Z, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Scientific Reports, 2017, 7: 43360.
DOI URL |
[23] | KIM D, HAN S A, KIM J H, et al. Biomolecular piezoelectric materials: from amino acids to living tissues. Advanced Materials, 2020, 32(14): 1906989. |
[24] | BAXTER F R, TURNER I G, BOWEN C R, et al. The structure and properties of electroceramics for bone graft substitution. Key Engineering Materials, 2008, 361(22): 99-102. |
[25] |
MAEDA H, TSUDA K, FUKADA E. Dependence on temperature and hydration of piezoelectric, dielectric and elastic-constants of bone. Japanese Journal of Applied Physics, 1976, 15(12): 2333-2336.
DOI URL |
[26] |
SALAHINEJAD E, BAGHJEGHAZ M J. Structure, biomineralization and biodegradation of Ca-Mg oxyfluorosilicates synthesized by inorganic salt coprecipitation. Ceramics International, 2017, 43(13): 10299-10306.
DOI URL |
[1] | 唐洁吟, 王刚, 刘聪, 邹学农, 陈晓峰. 微纳米生物活性玻璃诱导牙本质再矿化研究[J]. 无机材料学报, 2022, 37(4): 436-444. |
[2] | 施吉翔, 翟东, 朱敏, 朱钰方. 生物活性玻璃-二氧化锰复合支架的制备与表征[J]. 无机材料学报, 2022, 37(4): 427-435. |
[3] | 李胜, 宋国强, 张媛媛, 唐晓东. BTO基多铁陶瓷的制备及物理性能研究[J]. 无机材料学报, 2022, 37(1): 79-85. |
[4] | 朱子旻, 张敏慧, 张轩宇, 姚爱华, 林健, 王德平. 硼硅酸盐生物活性玻璃在直流电场下的体外矿化性能[J]. 无机材料学报, 2021, 36(9): 1006-1012. |
[5] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[6] | 包峰, 常江. 硅酸钙纳米线复合电纺丝支架的制备及离子释放研究[J]. 无机材料学报, 2021, 36(11): 1199-1207. |
[7] | 王通,王渊浩,杨海波,高淑雅,王芬,鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431-438. |
[8] | 郭霖, 乔显集, 李修芝, 龙西法, 何超. 三元陶瓷Pb(In1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3准同型相界附近组分的介电、铁电和压电性能[J]. 无机材料学报, 2020, 35(12): 1380-1384. |
[9] | 常宇辰, 林子扬, 谢昕, 吴章凡, 姚爱华, 叶松, 林健, 王德平, 崔旭. 基于介孔硼硅酸盐生物活性玻璃微球的可注射复合骨水泥[J]. 无机材料学报, 2020, 35(12): 1398-1406. |
[10] | 张晓晨, 王雪梅, 王春雷. 烧结方式对(K,Na,Li)(Nb,Sb,Ta)O3压电陶瓷的微观结构和物理性能的影响[J]. 无机材料学报, 2019, 34(7): 721-726. |
[11] | 吴盾, 秦帅, 刘春林, 方必军, 曹峥, 成骏峰. 硬脂酸表面改性对PLZT压电陶瓷粉末注射成型性能的影响[J]. 无机材料学报, 2019, 34(5): 535-540. |
[12] | 吴金结, 李艳, 魏仁初, 汪建新, 屈树新, 翁杰, 智伟. 微振动应力环境影响羟基磷灰石陶瓷生物活性及力学稳定性的体外评价[J]. 无机材料学报, 2019, 34(4): 417-424. |
[13] | 黄咏安, 路标, 邹艺轩, 李丹丹, 姚英邦, 陶涛, 梁波, 鲁圣国. 晶粒尺寸对细晶钛酸钡陶瓷介电、压电和铁电性能的影响[J]. 无机材料学报, 2018, 33(7): 767-772. |
[14] | 张彪, 杨长安, 施佩. 等离子活化烧结制备石墨烯/羟基磷灰石复相生物陶瓷[J]. 无机材料学报, 2018, 33(12): 1355-1359. |
[15] | 夏标军, 周志勇, 董显林. 过量Nb2O5对偏铌酸铅压电陶瓷烧结性能和电学性能的影响[J]. 无机材料学报, 2018, 33(11): 1248-1252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||