Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 647-655.DOI: 10.15541/jim20240512
• RESEARCH ARTICLE • Previous Articles Next Articles
HUANG Zipeng1,2,3(), JIA Wenxiao1,2,3, LI Lingxia1,2,3(
)
Received:
2024-12-10
Revised:
2025-02-27
Published:
2025-06-20
Online:
2025-03-06
Contact:
LI Lingxia, professor. E-mail: tjulingxiali_666@163.comAbout author:
HUANG Zipeng (1994-), male, PhD candidate. E-mail: hzptju613@163.com
Supported by:
CLC Number:
HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 647-655.
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Rwp/% | 10.36 | 13.56 | 7.95 | 6.32 |
Rp/% | 6.52 | 8.56 | 5.56 | 4.33 |
Table 1 Reliability factor of XRD refinement results of MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Rwp/% | 10.36 | 13.56 | 7.95 | 6.32 |
Rp/% | 6.52 | 8.56 | 5.56 | 4.33 |
Fig. 3 Surface morphologies of MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics sintered at 1340 ℃ (a) x=0; (b) x=0.01; (c) x=0.02; (d) x=0.03; Insets: particle size distribution
Bond | x=0 | x=0.01 | x=0.02 | x=0.03 | ||
---|---|---|---|---|---|---|
Mg–O1 | 2.0012 | 1.9033 | 2.0632 | 2.0821 | ||
Mg–O2(1) | 1.9892 | 2.0423 | 2.0032 | 2.0262 | ||
Mg–O2(2) | 2.0122 | 2.4343 | 2.0792 | 2.0631 | ||
Nb–O1(1) | 2.0223 | 2.1123 | 2.0642 | 2.0322 | ||
Nb–O1(2) | 2.1072 | 2.1612 | 2.0092 | 2.0082 | ||
Nb–O2 | 1.9621 | 1.8313 | 1.8341 | 1.8441 | ||
Nb–O3(1) | 2.1461 | 1.9962 | 2.1121 | 2.1431 | ||
Nb–O3(2) | 2.0542 | 2.1362 | 2.1362 | 2.1191 | ||
Nb–O3(3) | 2.0662 | 2.1723 | 2.0152 | 2.0002 |
Table 2 Bond lengths (Å) in MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics obtained from XRD refinement
Bond | x=0 | x=0.01 | x=0.02 | x=0.03 | ||
---|---|---|---|---|---|---|
Mg–O1 | 2.0012 | 1.9033 | 2.0632 | 2.0821 | ||
Mg–O2(1) | 1.9892 | 2.0423 | 2.0032 | 2.0262 | ||
Mg–O2(2) | 2.0122 | 2.4343 | 2.0792 | 2.0631 | ||
Nb–O1(1) | 2.0223 | 2.1123 | 2.0642 | 2.0322 | ||
Nb–O1(2) | 2.1072 | 2.1612 | 2.0092 | 2.0082 | ||
Nb–O2 | 1.9621 | 1.8313 | 1.8341 | 1.8441 | ||
Nb–O3(1) | 2.1461 | 1.9962 | 2.1121 | 2.1431 | ||
Nb–O3(2) | 2.0542 | 2.1362 | 2.1362 | 2.1191 | ||
Nb–O3(3) | 2.0662 | 2.1723 | 2.0152 | 2.0002 |
Fig. 4 Chemical bond characteristics of Mg-O and Nb-O bonds in MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics (a) Average bond ionicity; (b) Average covalency; (c) Total lattice energy; (d) Total bond energy
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Sij(B-O) | 4.0657 | 4.1612 | 4.5383 | 4.5777 |
GII | 0.7896 | 0.6069 | 0.3914 | 0.3458 |
Table 3 B position chemical bond valences (Sij(B-O)) and global instability indexes (GII) of MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Sij(B-O) | 4.0657 | 4.1612 | 4.5383 | 4.5777 |
GII | 0.7896 | 0.6069 | 0.3914 | 0.3458 |
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Atomic packing density/% | 71.25 | 71.33 | 71.46 | 71.50 |
Table 4 Atomic packing densities of MgNb2-x(Ti0.5W0.5)xO6 (x=0-0.03) ceramics
Parameter | x=0 | x=0.01 | x=0.02 | x=0.03 |
---|---|---|---|---|
Atomic packing density/% | 71.25 | 71.33 | 71.46 | 71.50 |
[1] | YANG X, VASWANI C, SUNDAHL C, et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nature Materials, 2018, 17(7): 586. |
[2] | HORIUCHI N. Terahertz surprises. Nature Photonics, 2018, 12: 128. |
[3] | ZHOU D, PANG L X, WANG D W, et al. Crystal structure, impedance and broadband dielectric spectra of ordered scheelite- structured Bi(Sc1/3Mo2/3)O4 ceramic. Journal of the European Ceramic Society, 2018, 38(4): 1556. |
[4] | YAO B C, LIU Y, HUANG S W, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photonics, 2018, 12: 22. |
[5] | LUO C Y, LI D, LUO Q, et al. Design of a tunable multiband terahertz waves absorber. Journal of Alloys and Compounds, 2015, 652: 18. |
[6] | NIKITIN A Y. Telecom meets terahertz. Nature Photonics, 2018, 12: 3. |
[7] | BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics. Journal of Advanced Ceramics, 2023, 12(1): 82. |
[8] | TIAN H R, ZHANG Y Y, WANG R H, et al. Effect of Ge4+- substituted on the structure characteristics and microwave/terahertz dielectric properties of ultra-low εr, high Q·f cordierite ceramics. Journal of Materials Science & Technology, 2025, 216: 165. |
[9] | TIAN H R, ZHANG X H, ZHANG Z D, et al. Low-permittivity LiLn(PO3)4 (Ln=La, Sm, Eu) dielectric ceramics for microwave/ millimeter-wave communication. Journal of Advanced Ceramics, 2024, 13(5): 602. |
[10] | XUE K L, ZHANG W N, SONG J L, et al. Three-dimensional reconstruction method for layered structures based on a frequency modulated continuous wave terahertz radar. Optics Express, 2024, 32(16): 27303. |
[11] | FU Y, REN Y Q, SUN D W. Novel analysis of food processes by terahertz spectral imaging: a review of recent research findings. Trends in Food Science & Technology, 2024, 147: 104463. |
[12] | JIANG W, ZHOU Q H, HE J G, et al. Terahertz communications and sensing for 6G and beyond: a comprehensive review. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2326. |
[13] | SATPATHY S, KHALAF O I, SHUKLA D K, et al. Consumer electronics based smart technologies for enhanced terahertz healthcare having an integration of split learning with medical imaging. Scientific Reports, 2024, 14: 10412. |
[14] | WITHAYACHUMNANKUL W, YAMADA R, FUJITA M, et al. All-dielectric rod antenna array for terahertz communications. APL Photonics, 2018, 3(5): 051707. |
[15] | SUN D D, QI L M, LIU Z Y. Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface. Results in Physics, 2020, 16: 102887. |
[16] | AKO R T, UPADHYAY A, WITHAYACHUMNANKUL W, et al. Dielectrics for terahertz metasurfaces: material selection and fabrication techniques. Advanced Optical Materials, 2020, 8(3): 1900750. |
[17] | WANG K M, GU J Q, SHI W Q, et al. All-dielectric nanograting for increasing terahertz radiation power of photoconductive antennas. Optics Express, 2020, 28(13): 19144. |
[18] | HUANG J B, YANG B, YU C Y, et al. Microwave and terahertz dielectric properties of MgTiO3-CaTiO3 ceramics. Materials Letters, 2015, 138: 225. |
[19] | YU C Y, ZENG Y, YANG B, et al. Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss. Scientific Reports, 2017, 7: 6639. |
[20] | WENG Z Z, SONG C X, XIONG Z X, et al. Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano- sized TiO2 addition. Ceramics International, 2019, 45(10): 13251. |
[21] | ZHANG B, GE M L. Investigation of optical pumping on the dielectric properties of 0.3SrTiO3-0.7NdAlO3 ceramics in THz range. Optical Materials, 2020, 109: 110226. |
[22] | HUANG Z P, QIAO J L, LI L X. Crystal structure, Raman spectra, and microwave dielectric performances of TiW-substituted magnesium niobite ceramics. Ceramics International, 2024, 50(3): 5013. |
[23] | ZHANG Q, SU H, TANG X L, et al. Effects of Cu2+ substitution on bond characteristics, Raman spectra, and microwave dielectric properties of Li2Mg0.6Zn0.4SiO4 ceramics. Journal of the European Ceramic Society, 2021, 41(6): 3432. |
[24] | HUANG Z P, LI L X, QIAO J L. Trace additive enhances microwave dielectric performance significantly to facilitate 5G communications. Journal of the American Ceramic Society, 2022, 105(12): 7426. |
[25] | SHANKER V, GANGULI A K. Comparative study of dielectric properties of MgNb2O6 prepared by molten salt and ceramic method. Bulletin of Materials Science, 2003, 26(7): 741. |
[26] | SARKAR K, MUKHERJEE S. Synthesis, characterization and property evaluation of single phase MgNb2O6 by chemical route. Journal of the Australian Ceramic Society, 2016, 52(2): 32. |
[27] | WANG S, LI L X, WANG X B. Low-temperature firing and microwave dielectric properties of MgNb2-xVx/2O6-1.25x ceramics. Ceramics International, 2022, 48(1): 199. |
[28] | TZOU W C, CHEN Y C, YANG C F, et al. Microwave dielectric characteristics of Mg(Ta1-xNbx)2O6 ceramics. Materials Research Bulletin, 2006, 41(7): 1357. |
[29] | HE L, YU H T, ZENG M S, et al. 0.73ZrTi2O6-0.27MgNb2O6 microwave dielectric ceramics modified by Al2O3 addition. Journal of the American Ceramic Society, 2018, 101(11): 5110. |
[30] | ZHANG Q, TANG X L, HUANG F Y, et al. Enhanced microwave dielectric properties of wolframite structured Zn1-xCuxWO4 ceramics with low sintering temperature. Journal of Materiomics, 2021, 7(6): 1309. |
[31] | ADAMS S, MORETZKI O, CANADELL E. Global instability index optimizations for the localization of mobile protons. Solid State Ionics, 2004, 168(3/4): 281. |
[32] | FAN X C, CHEN X M, LIU X Q. Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study. Chemistry of Materials, 2008, 20(12): 4092. |
[33] | ZHANG Q, XU L L, TANG X L, et al. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications. Journal of the European Ceramic Society, 2022, 42(13): 5691. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | ZHAO Kaixuan, LIU Wenpeng, DING Shoujun, DOU Renqin, LUO Jianqiao, GAO Jinyun, SUN Guihua, REN Hao, ZHANG Qingli. Nd:YLF Crystal Growth: Raw Materials Preparation by Melting Method and Property [J]. Journal of Inorganic Materials, 2025, 40(5): 529-535. |
[3] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[4] | SONG Yunxia, HAN Yinglei, YAN Tao, LUO Min. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl [J]. Journal of Inorganic Materials, 2023, 38(7): 778-784. |
[5] | ZHAO Wei, XU Yang, WAN Yingjie, CAI Tianxun, MU Jinxiao, HUANG Fuqiang. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance [J]. Journal of Inorganic Materials, 2022, 37(2): 140-151. |
[6] | PENG Fan, ZENG Yi. Method of Crystal Structure Identification by Using Kikuchi Diffraction Patterns [J]. Journal of Inorganic Materials, 2021, 36(11): 1193-1198. |
[7] | LI Shufang,ZHAO Shuang,ZHOU Xiao,LI Manrong. Crystal Structures, Optical, and Magnetic Properties of Zn3-xMnxTeO6 [J]. Journal of Inorganic Materials, 2020, 35(8): 895-901. |
[8] | LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5 [J]. Journal of Inorganic Materials, 2020, 35(7): 834-838. |
[9] | HUANG Chong,ZHAO Wei,WANG Dong,BU Kejun,WANG Sishun,HUANG Fuqiang. Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2 [J]. Journal of Inorganic Materials, 2020, 35(4): 505-510. |
[10] | Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2019, 34(4): 379-386. |
[11] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
[12] | ZHOU Xin, MA Lei, LIU Tao, GUO Yong-Bin, WANG Dao, DONG Pei-Lin. Crystal Structure and Magnetic Property of Si3N4/FePd/Si3N4 Thin Films [J]. Journal of Inorganic Materials, 2018, 33(8): 909-913. |
[13] | MENG Fan-Bin, MA Xiao-Fan, ZHANG Wei, WU Guang-Heng, ZHANG Yu-Jie. Structure and Magnetic Property of Fe and Mn Doped Spinel Co2MnO4 [J]. Journal of Inorganic Materials, 2017, 32(6): 609-614. |
[14] | WANG Qing-Qing, SHI Jian, LI Huan-Ying, CHEN Xiao-Feng, PAN Shang-Ke, BIAN Jian-Jiang, REN Guo-Hao. Optical and Scintillation Properties of Cs2LiYCl6:Ce Crystal [J]. Journal of Inorganic Materials, 2017, 32(2): 175-179. |
[15] | DAN Meng, ZHANG Qian, ZHONG Yun-Qian, ZHOU Ying. Preparation of MnS with Different Crystal Phases for Photocatalytic H2 Production from H2S [J]. Journal of Inorganic Materials, 2017, 32(12): 1308-1314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||