Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 778-784.DOI: 10.15541/jim20220667
Special Issue: 【材料计算】计算材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
SONG Yunxia1(), HAN Yinglei2, YAN Tao2(
), LUO Min2(
)
Received:
2022-11-09
Revised:
2022-12-27
Published:
2023-03-15
Online:
2023-03-17
Contact:
YAN Tao, associate professor. E-mail: yantao@fjirsm.ac.cn;About author:
SONG Yunxia (1992-), female, lecturer. E-mail: yxsong@fjut.edu.cn
Supported by:
CLC Number:
SONG Yunxia, HAN Yinglei, YAN Tao, LUO Min. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl[J]. Journal of Inorganic Materials, 2023, 38(7): 778-784.
Parameters | Rb3Hg2(SO4)3Cl |
---|---|
Mass formula | 981.22 |
Crystal system | Monoclinic |
Space group | P21 |
a/nm | 0.78653(2) |
b/nm | 0.97901(2) |
c/nm | 1.00104(3) |
β/(°) | 111.095(3) |
V/nm3 | 0.71916(3) |
Z | 2 |
ρ(calcd)/(g·cm-3) | 4.531 |
Temperature/K | 293(2) |
λ/nm | 0.071073 |
F(000) | 864.0 |
μ/mm-1 | 39.701 |
Rint | 0.0304 |
R/wR (I>2σ(I)) | 0.0304/0.0703 |
R/wR (all data) | 0.0317/0.0712 |
GOF on F2 | 1.023 |
Largest diff. peak and hole (e/nm-3) | 1.22×10-3 and -1.76×10-3 |
Table 1 Crystal parameters and structure refinements for Rb3Hg2(SO4)3Cl
Parameters | Rb3Hg2(SO4)3Cl |
---|---|
Mass formula | 981.22 |
Crystal system | Monoclinic |
Space group | P21 |
a/nm | 0.78653(2) |
b/nm | 0.97901(2) |
c/nm | 1.00104(3) |
β/(°) | 111.095(3) |
V/nm3 | 0.71916(3) |
Z | 2 |
ρ(calcd)/(g·cm-3) | 4.531 |
Temperature/K | 293(2) |
λ/nm | 0.071073 |
F(000) | 864.0 |
μ/mm-1 | 39.701 |
Rint | 0.0304 |
R/wR (I>2σ(I)) | 0.0304/0.0703 |
R/wR (all data) | 0.0317/0.0712 |
GOF on F2 | 1.023 |
Largest diff. peak and hole (e/nm-3) | 1.22×10-3 and -1.76×10-3 |
Fig. 4 Crystal structure of Rb3Hg2(SO4)3Cl (a) Coordination environment of S and Hg ions; (b) Stacking of [SO4], [HgO5] and [HgO4Cl] polyhedra within a single cell; (c) Spatial network structure
Fig. 6 Images of Rb3Hg2(SO4)3Cl birefringence (a) Crystals in polarized light; (b) Completed extinction of the crystal with forward compensation; (c) Completed extinction of the crystal with reverse compensation; (d) Thickness of measured crystal
Species | Dipole moment/D | |||
---|---|---|---|---|
x | y | z | Total | |
HgO5(typeⅠ) | 1.277 | 0.673 | -0.563 | 1.549 |
HgO5(typeⅡ) | -1.277 | 0.673 | 0.563 | 1.549 |
∑Hg-O | 0 | 1.346 | 0 | 1.346 |
HgO4Cl(typeⅠ) | 0.270 | 3.231 | -1.591 | 3.611 |
HgO4Cl(typeⅡ) | -0.262 | 3.224 | 1.591 | 3.605 |
∑Hg-O & ∑Hg-Cl | 0.008 | 6.455 | 0 | 6.455 |
SO4 (typeⅠ) | -0.928 | -0.103 | 2.047 | 2.250 |
SO4 (typeⅡ) | -1.177 | 1.609 | 0.607 | 2.084 |
SO4 (typeⅢ) | 1.767 | -0.702 | -1.505 | 2.425 |
SO4 (typeⅣ) | 0.928 | -0.102 | -2.039 | 2.243 |
SO4 (typeⅤ) | -1.765 | -0.702 | 1.512 | 2.428 |
SO4 (typeⅥ) | 1.176 | 1.611 | -0.608 | 2.085 |
∑S-O | 0.001 | 1.611 | 0.014 | 1.611 |
Table 2 Calculated dipole moments of Rb3Hg2(SO4)3Cl
Species | Dipole moment/D | |||
---|---|---|---|---|
x | y | z | Total | |
HgO5(typeⅠ) | 1.277 | 0.673 | -0.563 | 1.549 |
HgO5(typeⅡ) | -1.277 | 0.673 | 0.563 | 1.549 |
∑Hg-O | 0 | 1.346 | 0 | 1.346 |
HgO4Cl(typeⅠ) | 0.270 | 3.231 | -1.591 | 3.611 |
HgO4Cl(typeⅡ) | -0.262 | 3.224 | 1.591 | 3.605 |
∑Hg-O & ∑Hg-Cl | 0.008 | 6.455 | 0 | 6.455 |
SO4 (typeⅠ) | -0.928 | -0.103 | 2.047 | 2.250 |
SO4 (typeⅡ) | -1.177 | 1.609 | 0.607 | 2.084 |
SO4 (typeⅢ) | 1.767 | -0.702 | -1.505 | 2.425 |
SO4 (typeⅣ) | 0.928 | -0.102 | -2.039 | 2.243 |
SO4 (typeⅤ) | -1.765 | -0.702 | 1.512 | 2.428 |
SO4 (typeⅥ) | 1.176 | 1.611 | -0.608 | 2.085 |
∑S-O | 0.001 | 1.611 | 0.014 | 1.611 |
Fig. 8 Energy band structures and electronic density distribution of Rb3Hg2(SO4)3Cl (a) Diagram of calculated electronic band structures; (b) Diagrams of calculated PDOS
[1] | SAVAGE N. Ultraviolet lasers. Nature Photonics 2007, 1: 83. |
[2] | LUO M, LIANG F, SONG Y, et al. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. Journal of the American Chemical Society, 2018, 140: 3884. |
[3] | SONG Y, LUO M, YE N, Ultraviolet nonlinear optical crystals in π-conjugated system. Chinese Journal of Structural Chemistry, 2020, 39: 105. |
[4] |
XIA F, WANG F, HU H, et al. Application of second harmonic generation in characterization of 2D materials. Journal of Inorganic Materials, 2021, 36(10):1022.
DOI |
[5] |
SONG Y, LIANG F, TIAN H, et al. Molecular engineering design of the first Sr2Be2B2O7-type fluoride carbonates AMgLi2(CO3)2F (A=K, Rb) as deep-ultraviolet birefringent crystal. Acta Chimica Sinica, 2022, 80(2):105.
DOI URL |
[6] | LIU Y, LIN Z, LI Y, et al. Nonpolar Na10Cd(NO3)4(SO3S)4 exhibits a large second-harmonic generation. CCS Chemistry, 2021, 4: 526. |
[7] | TIAN H, LIN C, ZHAO X, et al. Design of a new ultraviolet nonlinear optical material KNO3SO3NH3 exhibiting an unexpected strong second harmonic generation response. Materials Today Physics, 2022, 28: 100849. |
[8] | MUTALIPU M, ZHANG M, WU H, et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nature Communications, 2018, 9: 3089. |
[9] | ZHAO S, GONG P, BAI L, et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nature Communications, 2014, 5: 4019. |
[10] | ZOU G, LIN C, JO H, et al. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angewandte Chemie International Edition, 2016, 55: 12078. |
[11] | YU H, KOOCHER N Z, RONDINELLI J, et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angewandte Chemie International Edition, 2018, 57: 6100. |
[12] | LUO M, SONG Y, LIANG F, et al. Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorganic Chemistry Frontiers, 2018, 5: 916. |
[13] |
Zou G H, Ye N, Huang L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. Journal of the American Chemical Society, 2011, 133(49):20001.
DOI PMID |
[14] | TRAN T, HE J, RONDINELLI J M, et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material. Journal of the American Chemical Society, 2015, 137: 10504. |
[15] |
DONG X, HUANG L, LIU Q, et al. Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chemical Communications, 2018, 54(45):5792.
DOI URL |
[16] | SHAN P, SUN T, CHEN H, et al. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Scientific Reports. 2016, 6: 25201. |
[17] |
YU P, WU L, ZHOU L, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). Journal of the American Chemical Society, 2014, 136(1):480.
DOI PMID |
[18] |
YU H, YOUNG J, WU H, et al. M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chemistry of Materials, 2017, 29: 1845.
DOI URL |
[19] | CHEN J, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. Journal of the American Chemical Society, 2018, 140: 14082. |
[20] |
LU X, CHEN Z, SHI X, et al. Two pyrophosphates with large birefringences and second-harmonic responses as ultraviolet nonlinear optical materials. Angewandte Chemie International Edition, 2020, 59(40):17648.
DOI URL |
[21] | DONG X, HUANG L, HU C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angewandte Chemie International Edition, 2019, 58: 6528. |
[22] | HE F, DENG Y, ZHAO X, et al. RbSbSO4Cl2: an excellent sulfate nonlinear optical material generated due to the synergistic effect of three asymmetric chromophores. Journal of Materials Chemistry C, 2019, 7: 5748. |
[23] | HE F, WANG Q, HU C, et al. Centrosymmetric (NH4)2SbCl(SO4)2 and non-centrosymmetric (NH4)SbCl2(SO4): synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Crystal Growth & Design, 2018, 18: 6239. |
[24] |
SANKAR R, RAGHAVAN C M, BALAJI M, et al. Synthesis and growth of triaquaglycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3], a new semiorganic nonlinear optical crystal. Crystal Growth & Design, 2007, 7(2):348.
DOI URL |
[25] |
SONG Y, HAO X, LIN C, et al. Two tellurium(IV)-based sulfates exhibiting strong second harmonic generation and moderate birefringence as promising ultraviolet nonlinear optical materials. Inorganic Chemistry, 2021, 60(15):11412.
DOI URL |
[26] | LI Y, YIN C, YANG X, et al. A nonlinear optical switchable sulfate of ultrawide bandgap. CCS Chemistry. 2020, 3: 2298. |
[27] | LI Y, LUO J, JI X, et al. A short-wave UV nonlinear optical sulfate of high thermal stability. Chinese Journal of Structural Chemistry, 2020, 39(3):485. |
[28] |
SUN Y, LIN C, TIAN H, et al. A2BeS2O8 (A = NH4, K, Rb, Cs) deep ultraviolet nonlinear optical crystals. Chemistry of Materials, 2022, 34(8):3781.
DOI URL |
[29] | HAN Y, ZHAO X, XU F, et al. HgSO4: an excellent mid-infrared sulfate nonlinear optical crystal with wide band gap and strong second harmonic generation response. Journal of Alloys and Compounds, 2022, 902: 163727. |
[30] | BENGT B. The crystal structures of Tl3(Hg(SO4)2)(HgSO4Cl) and Rb3(Hg(SO4)2)(HgSO4Cl). Acta Chemica Scandinavica, Series A: Physical and Inorganic Chemistry, 1976, 30: 241. |
[31] |
KURTZ S, PERRY T. A powder technique for evaluation of nonlinear optical materials. Journal of Applied Physics, 1968, 39(8):3798.
DOI URL |
[32] | KOHN W. Nobel Lecture: electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics, 1999, 71(5):1253. |
[33] |
MILMAN V, WINKLER B, WHITE J A, et al. Electronic structure, properties and phase stability of inorganic crystals: a pseudopotential plane-wave study. International Journal of Quantum Chemistry, 2000, 77(5):895.
DOI URL |
[34] |
YUAN G, MA X, HE H, et al. Plane strain on band structures and photoelectric properties of 2D monolayer MoSi2N4. Journal of Inorganic Materials, 2022, 37(5):527.
DOI URL |
[35] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First- principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter, 2002, 14(11):2717.
DOI URL |
[36] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78(7):1396. |
[37] |
WEN Z, HUANG B, LU T, et al. Pressure on the structure and thermal properties of PbTiO3: first-principle study. Journal of Inorganic Materials, 2022, 37(7):787.
DOI URL |
[38] |
ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: the PBE0 mode. Journal of Chemical Physics, 1999, 110(13):6158.
DOI URL |
[1] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[2] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[3] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[4] | ZHAO Wei, XU Yang, WAN Yingjie, CAI Tianxun, MU Jinxiao, HUANG Fuqiang. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance [J]. Journal of Inorganic Materials, 2022, 37(2): 140-151. |
[5] | PENG Fan, ZENG Yi. Method of Crystal Structure Identification by Using Kikuchi Diffraction Patterns [J]. Journal of Inorganic Materials, 2021, 36(11): 1193-1198. |
[6] | Li Cuixia, SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui. Construction and Photocatalytic Performance of 3D Hierarchical Pore rGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046. |
[7] | LI Shufang,ZHAO Shuang,ZHOU Xiao,LI Manrong. Crystal Structures, Optical, and Magnetic Properties of Zn3-xMnxTeO6 [J]. Journal of Inorganic Materials, 2020, 35(8): 895-901. |
[8] | LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5 [J]. Journal of Inorganic Materials, 2020, 35(7): 834-838. |
[9] | ZHOU Xiong, FANG Lizhi, HUANG Shuangwu, XIA Haiping, HU Jianxu, ZHANG Jianli, CHEN Baojiu. Ultraviolet and Near-infrared Luminescence of Ce 3+/Yb 3+ Co-doping LiLuF4 Single Crystal [J]. Journal of Inorganic Materials, 2020, 35(5): 556-560. |
[10] | HUANG Chong,ZHAO Wei,WANG Dong,BU Kejun,WANG Sishun,HUANG Fuqiang. Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2 [J]. Journal of Inorganic Materials, 2020, 35(4): 505-510. |
[11] | Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2019, 34(4): 379-386. |
[12] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
[13] | ZHOU Xin, MA Lei, LIU Tao, GUO Yong-Bin, WANG Dao, DONG Pei-Lin. Crystal Structure and Magnetic Property of Si3N4/FePd/Si3N4 Thin Films [J]. Journal of Inorganic Materials, 2018, 33(8): 909-913. |
[14] | CHEN Qiao-Ling, LUO Min, LIN Chen-Sheng. Synthesis, Characterization and Property of a New UV Nonlinear Optical Crystal KNa5Ca5(CO3)8 [J]. Journal of Inorganic Materials, 2018, 33(6): 667-672. |
[15] | MENG Fan-Bin, MA Xiao-Fan, ZHANG Wei, WU Guang-Heng, ZHANG Yu-Jie. Structure and Magnetic Property of Fe and Mn Doped Spinel Co2MnO4 [J]. Journal of Inorganic Materials, 2017, 32(6): 609-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||