Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 639-646.DOI: 10.15541/jim20240476
• RESEARCH ARTICLE • Previous Articles Next Articles
HE Guoqiang(), ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di(
)
Received:
2024-11-11
Revised:
2025-01-04
Published:
2025-06-20
Online:
2025-01-24
Contact:
ZHOU Di, professor. E-mail: zhoudi1220@xjtu.edu.cnAbout author:
HE Guoqiang (1998-), male, PhD candidate. E-mail: Guoqiang_0327@163.com
Supported by:
CLC Number:
HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: An Underrated K40 Microwave Dielectric Ceramic[J]. Journal of Inorganic Materials, 2025, 40(6): 639-646.
Fig. 2 XRD refinement patterns (a-e) and variations of lattice parameters with sintering temperature (f) of BNN ceramics sintered at different temperatures (a) 1500 ℃; (b) 1525 ℃; (c) 1550 ℃; (d) 1575 ℃; (e) 1600 ℃. Colorful figures are available on website
Sintering temperature/℃ | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | V/Å3 | Rwp/% | GOF |
---|---|---|---|---|---|---|---|---|---|
1500 | 6.08122 | 6.04673 | 8.54026 | 90 | 90 | 90.1595 | 314.038 | 5.33 | 2.56 |
1525 | 6.04613 | 6.04279 | 8.58079 | 90 | 90 | 90.3715 | 313.499 | 4.97 | 2.48 |
1550 | 6.04591 | 6.04162 | 8.57837 | 90 | 90 | 90.3576 | 313.337 | 4.65 | 2.30 |
1575 | 6.04643 | 6.04159 | 8.57961 | 90 | 90 | 90.3573 | 313.408 | 5.00 | 2.48 |
1600 | 6.08241 | 6.04409 | 8.53991 | 90 | 90 | 90.1503 | 313.949 | 5.90 | 2.83 |
Table 1 Crystallographic parameters and R-factors of BNN ceramics
Sintering temperature/℃ | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | V/Å3 | Rwp/% | GOF |
---|---|---|---|---|---|---|---|---|---|
1500 | 6.08122 | 6.04673 | 8.54026 | 90 | 90 | 90.1595 | 314.038 | 5.33 | 2.56 |
1525 | 6.04613 | 6.04279 | 8.58079 | 90 | 90 | 90.3715 | 313.499 | 4.97 | 2.48 |
1550 | 6.04591 | 6.04162 | 8.57837 | 90 | 90 | 90.3576 | 313.337 | 4.65 | 2.30 |
1575 | 6.04643 | 6.04159 | 8.57961 | 90 | 90 | 90.3573 | 313.408 | 5.00 | 2.48 |
1600 | 6.08241 | 6.04409 | 8.53991 | 90 | 90 | 90.1503 | 313.949 | 5.90 | 2.83 |
Fig. 4 (a-e) SEM images of sintered BNN ceramics at different temperatures with insets showing grain size distributions; (f) Variation of average grain size with sintering temperature (a) 1500 ℃; (b)1525 ℃; (c)1550 ℃; (d)1575 ℃; (e)1600 ℃
Fig. 8 All-dielectric frequency selection surface (a) Simulation model; (b, c) Distributions of electric field and magnetic field of the sample under two reflection pole; (d) Reflection and transmission characteristics of FSS; (e) FSS normalized the real and imaginary parts of the impedance; (f) Simulation results. Colorful figures are available on website
[1] | SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60(7): 392. |
[2] | PENG S, ZHANG Y, YI T. Research progress of Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics: a review. Materials, 2023, 16(1): 423. |
[3] | SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Current Opinion in Solid State & Materials Science, 2016, 20(3): 151. |
[4] | SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008, 53(2): 57. |
[5] | YANG H, ZHANG S, YANG H, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorganic Chemistry Frontiers, 2020, 7: 4711. |
[6] | SHEHBAZ M, DU C, ZHOU D, et al. Recent progress in dielectric resonator antenna: materials, designs, fabrications, and their performance. Applied Physics Reviews, 2023, 10: 021303. |
[7] | HILL M D, CRUICKSHANK D B, MACFARLANE I A. Perspective on ceramic materials for 5G wireless communication systems. Applied Physics Letters, 2021, 118: 120501. |
[8] | REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 2006, 89(7): 2063. |
[9] | WANG X, ZHOU T, WANG W, et al. Effect of B-site complex substitutions on orthorhombic distortion and microwave dielectric properties of Ca(Zr0.95Ti0.05)O3 perovskites. Journal of Materials Chemistry C, 2024, 12: 3124. |
[10] | 石锋. A(B'1/3B''2/3)O3型复合钙钛矿微波介质陶瓷材料的发展. 硅酸盐通报, 2006, 25(4): 5. |
[11] | KAWASHIMA S, NISHIDA M, UEDA I, et al. Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. Journal of the American Ceramic Society, 1983, 66: 421. |
[12] | NOMURA S, TOYAMA K, KANETA K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss. Japanese Journal of Applied Physics, 1982, 21(10A): L624. |
[13] | WU H, DAVIES P K. Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: Ⅱ. Compositional variations in pure BZN. Journal of the American Ceramic Society, 2006, 89(7): 2250. |
[14] | NOMURA S, TOYAMA K, KANETA K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss. Japanese Journal of Applied Physics, 1982, 21(10A): L624. |
[15] | VARMA M R, SEBASTIAN M T. Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. Journal of the European Ceramic Society, 2007, 27(8/9): 2827. |
[16] | KHALAM L A, ANJANA P S, SEBASTIAN M T. The effect of dopants on the dielectric properties of Ba(B'1/2Ta1/2)O3 (B=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) microwave ceramics. International Journal of Applied Ceramic Technology, 2008, 5(5): 571. |
[17] | GUO H H, FU M S, ZHOU D, et al. Design of a high-efficiency and-gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2020, 13(1): 912. |
[18] | WANG K, ZHAO Y, CHEN X, et al. Effects of sintering temperature on microstructure and varistor performances of ZnO-SrCO3-Co2O3 ceramics. Ceramics International, 2024, 50(23): 51162. |
[19] | SWIKKER K R J, KANAGASABAPATHY H, MANICKAM I N, et al. Effect of sintering temperature on grain growth and mechanical properties of copper/graphene nanosheet composite. Diamond and Related Materials, 2020, 110: 108111. |
[20] | PAREDES-GOYES B, JAUFFRES D, MISSIAEN J M, et al. Grain growth in sintering: a discrete element model on large packings. Acta Materialia, 2021, 218: 117182. |
[21] | HE G, JIANG Y, SONG K, et al. UltrahighQ Sr1+xY2O4+x (x=0-0.04) microwave dielectric ceramics for temperature-stable millimeter-wave dielectric resonator antennas. Journal of Advanced Ceramics, 2024, 13(2): 155. |
[22] | DU C, FU M S, ZHOU D, et al. Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications. Journal of the American Ceramic Society, 2021, 104(9): 4659. |
[23] | DU C, ZHOU D, HAO S Z, et al. High-quality-factor AlON transparent ceramics for 5 GHz Wi-Fi aesthetically decorative antennas. ACS Applied Materials & Interfaces, 2021, 13(39): 46866. |
[24] | HE G, ZHAO Z, LIU Y, et al. Sintering characteristics, phase structure and microwave dielectric properties of novel BaCeO3 ceramics. Materials Research Bulletin, 2024, 172: 112790. |
[25] | QI C, WANG F, LAI Y, et al. Temperature stability of Li2TiO3- Zn2SiO4 microwave dielectric ceramics. European Journal of Inorganic Chemistry, 2022, 2022(29): e202200380. |
[26] | LIU Y, HE G, NIE Y, et al. Influence of sintering characteristics and structural properties on the microwave dielectric properties of non-stoichiometric Ca3Mn2+xGe3O12+δ (x=0-0.2) ceramics. Journal of Materials Chemistry C, 2024, 12(18): 6615. |
[27] | PAN H L, CHENG L, WU H T. Relationships between crystal structure and microwave dielectric properties of Li2(Mg1-xCox)3TiO6 (0≤x≤0.4) ceramics. Ceramics International, 2017, 43(17): 15018. |
[28] | LIN I N, CHIA C T, LIU H L, et al. Intrinsic dielectric and spectroscopic behavior of perovskite Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics. Journal of Applied Physics, 2007, 102: 044112. |
[29] | LIU B, HUANG Y H, SONG K X, et al. Structural evolution and microwave dielectric properties in Sr2(Ti1-xSnx)O4 ceramics. Journal of the European Ceramic Society, 2018, 38(11): 3833. |
[30] | WANG G, ZHANG D, GAN G, et al. Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceramics International, 2019, 45(16): 19766. |
[31] | SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics, 1993, 73(1): 348. |
[32] | BOSMAN A J, HAVINGA E E. Temperature dependence of dielectric constants of cubic ionic compounds. Physical Review, 1962, 129(4): 1593. |
[33] | PENN S J, ALFORD N M, TEMPLETON A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. Journal of the American Ceramic Society, 2005, 80(7): 1885. |
[34] | LIAO Q, LI L, REN X, et al. New low-loss microwave dielectric material ZnTiNbTaO8. Journal of the American Ceramic Society, 2011, 94(10): 3237. |
[1] | YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704-710. |
[2] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[3] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[4] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[5] | LI Hai-Tao, LI Qian, YAN Yan-Fu, XU Rong-Hui. Effect of ZnO-doping on Sinterability and Microwave Dielectric Property of Ca0.25(Li0.43Sm0.57)0.75TiO3 Ceramics [J]. Journal of Inorganic Materials, 2015, 30(4): 369-373. |
[6] | LIU Lin, FANG You-Wei, DENG Xin-Feng, ZHUANG Wen-Dong, TANG Bin, ZHANG Shu-Ren. Crystal Structures and Microwave Dielectric Properties of (Ba1-xSrx)La4Ti4O15 (x=0.8-0.95) Ceramics [J]. Journal of Inorganic Materials, 2012, 27(3): 281-284. |
[7] | YAO Xiao-Gang, LIN Hui-Xing, JIANG Shao-Hu, CHEN Wei, LUO Lan. Effects of Al2O3-doping on the Microstructure and Dielectric Properties of Ba4Sm9.33Ti18O54 Ceramics [J]. Journal of Inorganic Materials, 2012, 27(12): 1266-1270. |
[8] | FAN Yue-Nong, NIE Yan, LIAO Zhang-Qi, WANG Xian, GONG Rong-Zhou. Design of Ultra-thin Absorbers Embedded with Fractal Frequency Selective Surface in Low Frequency [J]. Journal of Inorganic Materials, 2012, 27(12): 1336-1340. |
[9] | LIU Hao, SHEN Chun-Ying, LU Zheng-Dong, QIU Tai. Microwave Dielectric Properties of the (1-x)(Mg0.9Co0.1)TiO3-x(Ca0.61La0.26)TiO3 Ceramics [J]. Journal of Inorganic Materials, 2011, 26(6): 664-668. |
[10] | YAO Guo-Guang,LIU Peng. Effects of V5+ Substitution on the Dielectric Properties of Mg(SbNb1-xV xO9 Ceramics [J]. Journal of Inorganic Materials, 2008, 23(5): 877-880. |
[11] | ZHOU Dong-Xiang,YU Xiao-Hua,WANG He,ZHAO Jun. Sintering Characters and Phase Composition of BaO-CeO2-TiO2 Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2007, 22(6): 1197-1200. |
[12] | YANG Qiu-Hong,KIM Eung-Soo,XU Jun. Effect of A-site Substitution by Nd~3+ on the Microwave Dielectric Properties of (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Ceramics [J]. Journal of Inorganic Materials, 2003, 18(5): 1051-1056. |
[13] | WANG Ning,ZHAO Mei-Yu,YIN Zhi-Wen. Low-Temperature Firing in Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2002, 17(5): 915-924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||