Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1325-1330.DOI: 10.15541/jim20240156
Special Issue: 【信息功能】柔性材料(202412); 【能源环境】热电材料(202412)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Botao1(), SUN Tingting3(
), WANG Lianjun1(
), JIANG Wan1,2
Received:
2024-04-01
Revised:
2024-05-27
Published:
2024-06-24
Online:
2024-06-24
Contact:
SUN Tingting, lecturer. E-mail: Tingtingsun@dhu.edu.cn;About author:
ZHANG Botao (1997-), male, Master candidate. E-mail: zbtfsy@163.com
Supported by:
CLC Number:
ZHANG Botao, SUN Tingting, WANG Lianjun, JIANG Wan. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films[J]. Journal of Inorganic Materials, 2024, 39(12): 1325-1330.
Sintering temperature/℃ | σ/(S·cm-1) | S/(μV·K-1) | PF/(μW·m-1·K-2) |
---|---|---|---|
300 | 80 | 108 | 93 |
350 | 168 | 126 | 266 |
400 | 227 | 138 | 432 |
Table 1 Thermoelectric properties of films sintered at different temperatures
Sintering temperature/℃ | σ/(S·cm-1) | S/(μV·K-1) | PF/(μW·m-1·K-2) |
---|---|---|---|
300 | 80 | 108 | 93 |
350 | 168 | 126 | 266 |
400 | 227 | 138 | 432 |
Material | σ/ (S·cm-1) | S/ (μV·K-1) | PF/ (μW·m-1·K-2) | Ref. |
---|---|---|---|---|
PEDOT | 267 | 21.5 | 12.3 | [ |
PEDOT | 300 | 10 | 3 | [ |
Graphene | 41 | 12 | 18.7 | [ |
Bi0.5Sb1.5Te3 | 135 | 21 | 61 | [ |
Bi0.5Sb1.5Te3 | 338 | 67.3 | 153 | [ |
AgCuTe | 227 | 138 | 432 | This work |
Table 2 Performance of inkjet printed p-type thermoelectric materials in this work and reported literatures
Material | σ/ (S·cm-1) | S/ (μV·K-1) | PF/ (μW·m-1·K-2) | Ref. |
---|---|---|---|---|
PEDOT | 267 | 21.5 | 12.3 | [ |
PEDOT | 300 | 10 | 3 | [ |
Graphene | 41 | 12 | 18.7 | [ |
Bi0.5Sb1.5Te3 | 135 | 21 | 61 | [ |
Bi0.5Sb1.5Te3 | 338 | 67.3 | 153 | [ |
AgCuTe | 227 | 138 | 432 | This work |
[1] | PEI J, CAI B, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 2020, 7(12): 1856. |
[2] | JIA B, HUANG Y, WANG Y, et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe. Energy & Environmental Science, 2022, 15(5): 1920. |
[3] | HU Z, FU Y, JIANG M, et al. Thermal stability of Nb/Mg3SbBi interface. Journal of Inorganic Materials, 2023, 38(8):931. |
[4] | HONG M, ZOU J, CHEN Z, et al. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Advanced Materials, 2019, 31(14):1807071. |
[5] | XU S, SHI X L, DARGUSCH M, et al. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Progress in Materials Science, 2021, 121: 100840. |
[6] | JIN H, LI J, IOCOZZIA J, et al. Hybride organisch- anorganische thermoelektrische materialien und baueinheiten. Angewandte Chemie International Edition, 2019, 131(43):15348. |
[7] | ZHANG L, SHI X L, YANG Y L, et al. Flexible thermoelectric materials and devices: from materials to applications. Materials Today, 2021, 46: 62. |
[8] | BURTON M, HOWELLS G, ATOYO J, et al. Printed thermoelectrics. Advanced Materials, 2022, 34(18):2108183. |
[9] | LIN Z, HOLLAR C, KANG J S, et al. A solution processable high- performance thermoelectric copper selenide thin film. Advanced Materials, 2017, 29(21):1606662. |
[10] | XU Y, WU B, HOU C, et al. High thermoelectric performance in Ti3C2Tx MXene/Sb2Te3 composite film for highly flexible thermoelectric devices. Global Challenges, 2024, 8(2):2300032. |
[11] | NEWBROOK D W, RICHARDS S P, GREENACRE V K, et al. Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators. ACS Applied Energy Materials, 2020, 3(6):5840. |
[12] | ZHENG Z H, SHI X L, AO D W, et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nature Sustainability, 2022, 6(2):180. |
[13] | SHI J, WU X, GENG X, et al. Anisotropy engineering in solution- derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices. Chemical Engineering Journal, 2023, 458: 141450. |
[14] |
LIU Y, ZHU H, XING L, et al. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale, 2023, 15(13):6025.
DOI PMID |
[15] | ZENG M, DU Y, JIANG Q, et al. High-throughput printing of combinatorial materials from aerosols. Nature, 2023, 617(7960):292. |
[16] | ZHANG D, LIM X J G, LI X, et al. 3D-Printed porous thermoelectrics for in situ energy harvesting. ACS Energy Letters, 2023, 8(1):332. |
[17] | BERETTA D, BARKER A J, MAQUEIRA-ALBO I, et al. Thermoelectric properties of highly conductive poly(3,4- ethylenedioxythiophene) polystyrene sulfonate printed thin films. ACS Applied Materials & Interfaces, 2017, 9(21):18151. |
[18] | JING J, CHOPPLET L, BATTAGLINI N, et al. The role of substrates and electrodes in inkjet-printed PEDOT: PSS thermoelectric generators. Journal of Materials Chemistry C, 2024, 12(17):6185. |
[19] | JUNTUNEN T, JUSSILA H, RUOHO M, et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Advanced Functional Materials, 2018, 28(22):1800480. |
[20] | FERHAT S, DOMAIN C, VIDAL J, et al. Flexible thermoelectric device based on TiS2HAx n-type nanocomposite printed on paper. Organic Electronics, 2019, 68: 256. |
[21] | HORIKE S, FUKUSHIMA T, SAITO T, et al. Highly stable n-type thermoelectric materials fabricated via electron doping into inkjet-printed carbon nanotubes using oxygen-abundant simple polymers. Molecular Systems Design & Engineering, 2017, 2(5):616. |
[22] | DU J, ZHANG B, JIANG M, et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires. Advanced Functional Materials, 2023, 33(26):2213564. |
[23] |
LU Z, LAYANI M, ZHAO X, et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 2014, 10(17):3551.
PMID |
[24] | CHEN B, DAS S R, ZHENG W, et al. Inkjet printing of single- crystalline Bi2Te3 thermoelectric nanowire networks. Advanced Electronic Materials, 2017, 3(4):1600524. |
[25] |
CHEN B, KRUSE M, XU B, et al. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale, 2019, 11(12):5222.
DOI PMID |
[26] |
ZHANG K, ZHENG Q, WANG L, et al. Preparation and characterization of Ag2Se-based ink used for inkjet printing. Journal of Inorganic Materials, 2022, 37(10):1109.
DOI |
[27] | LIU Y, ZHANG Q, HUANG A, et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation. Nature Communications, 2024, 15(1): 2141. |
[28] | WANG S, JIANG M, WANG L, et al. n-Type Pb-free AgBiSe2 based thermoelectric materials with stable cubic phase structure. Journal of Inorganic Materials, 2023, 38(7):807. |
[29] | LI L, ZHAI W, WANG C, et al. Maximizing phonon scattering efficiency by Cu2Se alloying in AgCuTe thermoelectric materials. Journal of Materials Chemistry A, 2022, 10(12):6701. |
[30] | WEI T, QIU P, ZHAO K, et al. Ag2Q-Based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Advanced Materials, 2023, 35(1):2110236. |
[31] | WU R, LI Z, LI Y, et al. Synergistic optimization of thermoelectric performance in p-type Ag2Te through Cu substitution. Journal of Materiomics, 2019, 5(3):489. |
[32] | LIU W, YANG L, CHEN Z, et al. Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Advanced Materials, 2020, 32(8):1905703. |
[33] | DENG S, JIANG X, CHEN L, et al. Ultralow thermal conductivity and high thermoelectric performance in AgCuTe1-xSex through isoelectronic substitution. ACS Applied Materials & Interfaces, 2021, 13(1):868. |
[34] | JIANG J, ZHU H, NIU Y, et al. Achieving high room-temperature thermoelectric performance in cubic AgCuTe. Journal of Materials Chemistry A, 2020, 8(9):4790. |
[35] | NIU Y, LI S, MAO J, et al. Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. Nano Energy, 2020, 77: 105297. |
[36] |
YANG Q, YANG S, QIU P, et al. Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377(6608):854.
DOI PMID |
[37] | LI J, LYU J, YANG W, et al. The remarkable role of indium in synergistically optimizing carrier concentration and phase distribution of AgCuTe-based materials. Small, 2024, 20(28):2311340. |
[38] | LYU J, LI J, YANG W, et al. Enhancing thermoelectric performance in GeTe through Ge enrichment regulation and AgCuTe alloying. Chemical Engineering Journal, 2024, 485: 149695. |
[39] | MA Z, XU T, LI W, et al. High thermoelectric performance SnTe with a segregated and percolated structure. ACS Applied Materials & Interfaces, 2022, 14(7):9192. |
[40] | ROYCHOWDHURY S, JANA M K, PAN J, et al. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angewandte Chemie International Edition, 2018, 57(15):4043. |
[41] | LUAN X, LI J, WU S, et al. A nanoscale perspective of the coexistence of multidimensional defects in the AgCuTe system. Nano Energy, 2024, 124: 109505. |
[42] | ZENG M, ZAVANELLI D, CHEN J, et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51(2):485. |
[43] |
HU G, ALBROW-OWEN T, JIN X, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature Communications, 2017, 8(1):278.
DOI PMID |
[1] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[2] | SUN Jingwei, WANG Honglei, SUN Chuhan, ZHOU Xingui, JI Xiaoyu. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(2): 184-192. |
[3] | WANG Lukai, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review [J]. Journal of Inorganic Materials, 2023, 38(10): 1133-1148. |
[4] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[5] | ZHOU Hongli, CAI Zhiyong, WANG Xiaofeng, ZENG Jin, FENG Yan, PENG Chaoqun, WANG Richu. Direct Ink Writing of Gypsum: Developing a Printable Gypsum Paste [J]. Journal of Inorganic Materials, 2022, 37(3): 338-346. |
[6] | ZHANG Keyi, ZHENG Qi, WANG Lianjun, JIANG Wan. Preparation and Characterization of Ag2Se-based Ink Used for Inkjet Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1109-1115. |
[7] | WANG Yuanjie, PEI Xueliang, LI Haoyi, XU Xin, HE Liu, HUANG Zhengren, HUANG Qing. Crosslinking of Active Polycarbosilane Initiated by Free Radical and Its Application in the Preparation of SiC Fibers [J]. Journal of Inorganic Materials, 2021, 36(9): 967-973. |
[8] | WU Si,MEI Lei,HU Kong-Qiu,CHAI Zhi-Fang,NIE Chang-Ming,SHI Wei-Qun. pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers [J]. Journal of Inorganic Materials, 2020, 35(2): 243-249. |
[9] | LI Xin, NIU Shu-Xin, YAO Jian-Sheng, TANG Ding-Zhong, CAO Chun-Xiao, YAN Jun-Hao. Effect of Al Powder on Property and Microstructure of Silica-based Ceramic Core [J]. Journal of Inorganic Materials, 2019, 34(2): 207-212. |
[10] | WU Qing-Qing, WANG Zhen, DING Qi, NI De-Wei, KAN Yan-Mei, DONG Shao-Ming. C/SiOC Composites by a Modified PIP Using Solid Polysiloxane: Fabrication, Microstructure and Mechanical Properties [J]. Journal of Inorganic Materials, 2019, 34(12): 1349-1356. |
[11] | WANG Gui-Xin, PEI Zhi-Bin, YE Chang-Hui. Inkjet-printing and Performance Investigation of Self-powered Flexible Graphene Oxide Humidity Sensors [J]. Journal of Inorganic Materials, 2019, 34(1): 114-120. |
[12] | XIN Zhi-Qing, LI Xiu, JI Lei, LI Ze-Tao, XIANG Fei-Xiang, LIU Shi-Li, LI Lu-Hai. Stamp Structure on the Conductive Grid Patterns Prepared by Microcontact Printing [J]. Journal of Inorganic Materials, 2017, 32(7): 713-718. |
[13] | YANG Jie, PAN Zheng-Hui, SHENG Lei-Mei, AN Kang, ZHAO Xin-Luo. Graphene Nanosheets Prepared by Arc Discharge Method and Their Application in Conductive Inkjet [J]. Journal of Inorganic Materials, 2017, 32(1): 39-44. |
[14] | ZHANG Zhi-Gang, YAO Guang-Chun, LUO Hong-Jie, ZHANG Xiao, MA Jun-Fei, XU Jian-Rong. Sintering Behavior and Properties of NiFe2O4 Ceramic Inert Anode Toughened by Adding NiFe2O4 Nanopowder [J]. Journal of Inorganic Materials, 2016, 31(7): 761-768. |
[15] | YANG Zhi-Gang, YU Jian-Bo, LI Chuan-Jun, XUAN Wei-Dong, ZHANG Zhen-Qiang, DENG Kang, REN Zhong-Ming. Preparing Porous Si-based Ceramic Core Using Thermosetting Silicon Resin Injection Method [J]. Journal of Inorganic Materials, 2015, 30(2): 147-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||