Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (12): 1475-1482.DOI: 10.15541/jim20230059
Special Issue: 【信息功能】透明陶瓷与闪烁晶体(202409)
• RESEARCH LETTER • Previous Articles Next Articles
WANG Haidong1,2,3(), WANG Yan1,3, ZHU Zhaojie1,3, LI Jianfu1,3, LAKSHMINARAYANA Gandham4, TU Chaoyang1,3(
)
Received:
2023-02-06
Revised:
2023-02-27
Published:
2023-09-12
Online:
2023-09-12
Contact:
TU Chaoyang, professor. E-mail: tcy@fjirsm.ac.cnAbout author:
WANG Haidong (1997-), male, Master candidate. E-mail: wanghaidong@fjirsm.ac.cn
Supported by:
CLC Number:
WANG Haidong, WANG Yan, ZHU Zhaojie, LI Jianfu, LAKSHMINARAYANA Gandham, TU Chaoyang. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal[J]. Journal of Inorganic Materials, 2023, 38(12): 1475-1482.
Parameter | Dy:SGGM | SGGM (PDF#50-1835) |
---|---|---|
a, b/nm | 0.79741 | 0.79651 |
c/nm | 0.52599 | 0.52368 |
V/nm3 | 0.334460 | 0.33224 |
ρ/(g·cm-3) | 5.670 | 5.658 |
Space group | P$\bar{4}$21m | |
Rwp | 12.456% | |
χ2 | 1.35 |
Table 1 Comparison of structural parameters of Dy: SGGM crystal before and after Rietveld refinement
Parameter | Dy:SGGM | SGGM (PDF#50-1835) |
---|---|---|
a, b/nm | 0.79741 | 0.79651 |
c/nm | 0.52599 | 0.52368 |
V/nm3 | 0.334460 | 0.33224 |
ρ/(g·cm-3) | 5.670 | 5.658 |
Space group | P$\bar{4}$21m | |
Rwp | 12.456% | |
χ2 | 1.35 |
Crystal | λ/nm | FWHM/ nm | σabs/ (×10-21, cm2) | Ref. |
---|---|---|---|---|
Dy: CeF3 | 450 | 9.4 | 0.61 | [ |
Dy: PbWO4 | 454 | 5.71 | 1.42 | [ |
Dy: CNGS | 453 | 10.2 | 1.2 | [ |
Dy: Sr3Y(BO3)3 | 450 | 8(π) 10(σ) | 0.8(π) 0.6(σ) | [ |
Dy: CaYAlO4 | 453 | - | 3.3(π) 2.1(σ) | [ |
Dy: CaGdAlO4 | 452 | 2.5(π) 4.3(σ) | 1.28(π) 2.43(σ) | [ |
Dy: YAG | 447 | 1.9 | 2.3 | [ |
Dy: SGGM | 452 | 10.4(π) 11.8(σ) | 0.594(π) 0.555(σ) | This work |
Table 2 Comparison of absorption spectral parameters of Dy3+-doped crystals
Crystal | λ/nm | FWHM/ nm | σabs/ (×10-21, cm2) | Ref. |
---|---|---|---|---|
Dy: CeF3 | 450 | 9.4 | 0.61 | [ |
Dy: PbWO4 | 454 | 5.71 | 1.42 | [ |
Dy: CNGS | 453 | 10.2 | 1.2 | [ |
Dy: Sr3Y(BO3)3 | 450 | 8(π) 10(σ) | 0.8(π) 0.6(σ) | [ |
Dy: CaYAlO4 | 453 | - | 3.3(π) 2.1(σ) | [ |
Dy: CaGdAlO4 | 452 | 2.5(π) 4.3(σ) | 1.28(π) 2.43(σ) | [ |
Dy: YAG | 447 | 1.9 | 2.3 | [ |
Dy: SGGM | 452 | 10.4(π) 11.8(σ) | 0.594(π) 0.555(σ) | This work |
Transition 6H15/2→ | π-polarization | σ-polarization | ||||
---|---|---|---|---|---|---|
$\bar{\lambda}$/nm | Sexp/(×10-20, cm2) | Scalc/(×10-20, cm2) | $\bar{\lambda}$/nm | Sexp/(×10-20, cm2) | Scalc/(×10-20, cm2) | |
4G11/2 | 426 | 0.053 | 0.028 | 422 | 0.076 | 0.022 |
4I15/2 | 450 | 0.104 | 0.093 | 450 | 0.148 | 0.123 |
4F9/2 | 470 | 0.039 | 0.033 | 473 | 0.055 | 0.043 |
6F3/2 | 766 | 0.088 | 0.051 | 761 | 0.077 | 0.076 |
6F5/2 | 791 | 0.286 | 0.291 | 792 | 0.403 | 0.429 |
6F7/2 | 893 | 0.978 | 0.846 | 901 | 1.179 | 1.067 |
6H7/2+6F9/2 | 1074 | 1.631 | 1.672 | 1079 | 1.677 | 1.701 |
6H9/2+6F11/2 | 1266 | 6.670 | 6.660 | 1259 | 6.961 | 6.953 |
6H11/2 | 1693 | 0.970 | 1.078 | 1656 | 1.292 | 1.370 |
RMS/(×10-20, cm2) | 0.074 | 0.063 |
Table 3 Experimental and calculated line strengths in Dy:SGGM crystal
Transition 6H15/2→ | π-polarization | σ-polarization | ||||
---|---|---|---|---|---|---|
$\bar{\lambda}$/nm | Sexp/(×10-20, cm2) | Scalc/(×10-20, cm2) | $\bar{\lambda}$/nm | Sexp/(×10-20, cm2) | Scalc/(×10-20, cm2) | |
4G11/2 | 426 | 0.053 | 0.028 | 422 | 0.076 | 0.022 |
4I15/2 | 450 | 0.104 | 0.093 | 450 | 0.148 | 0.123 |
4F9/2 | 470 | 0.039 | 0.033 | 473 | 0.055 | 0.043 |
6F3/2 | 766 | 0.088 | 0.051 | 761 | 0.077 | 0.076 |
6F5/2 | 791 | 0.286 | 0.291 | 792 | 0.403 | 0.429 |
6F7/2 | 893 | 0.978 | 0.846 | 901 | 1.179 | 1.067 |
6H7/2+6F9/2 | 1074 | 1.631 | 1.672 | 1079 | 1.677 | 1.701 |
6H9/2+6F11/2 | 1266 | 6.670 | 6.660 | 1259 | 6.961 | 6.953 |
6H11/2 | 1693 | 0.970 | 1.078 | 1656 | 1.292 | 1.370 |
RMS/(×10-20, cm2) | 0.074 | 0.063 |
Crystal | Ω2/(×10-20, cm2) | Ω4/(×10-20, cm2) | Ω6/(×10-20, cm2) | Ref. |
---|---|---|---|---|
Dy: LiLuF4 | 2.04 | 0.91 | 1.09 | [ |
Dy: YAG | 1.49 | 0.94 | 3.20 | [ |
Dy: CaGdAlO4 | 1.80 | 1.00 | 0.50 | [ |
Dy: CaYAlO4 | 5.05 | 9.95 | 3.12 | [ |
Dy: Sr3Y(BO3)3 | 2.39 | 0.88 | 1.22 | [ |
Dy: LiNbO3 | 5.42 | 1.14 | 2.51 | [ |
Dy: YSGG | 0.13 | 0.73 | 1.06 | [ |
Dy: GGG | 0.17 | 2.66 | 2.57 | [ |
Dy: SGGM | 5.113 (π) 5.686 (σ) 5.495 (eff) | 1.796 (π) 1.316 (σ) 1.476 (eff) | 0.843 (π) 1.243 (σ) 1.110 (eff) | This work |
Table 4 Comparison of J-O intensity parameters with other Dy3+-doped materials
Crystal | Ω2/(×10-20, cm2) | Ω4/(×10-20, cm2) | Ω6/(×10-20, cm2) | Ref. |
---|---|---|---|---|
Dy: LiLuF4 | 2.04 | 0.91 | 1.09 | [ |
Dy: YAG | 1.49 | 0.94 | 3.20 | [ |
Dy: CaGdAlO4 | 1.80 | 1.00 | 0.50 | [ |
Dy: CaYAlO4 | 5.05 | 9.95 | 3.12 | [ |
Dy: Sr3Y(BO3)3 | 2.39 | 0.88 | 1.22 | [ |
Dy: LiNbO3 | 5.42 | 1.14 | 2.51 | [ |
Dy: YSGG | 0.13 | 0.73 | 1.06 | [ |
Dy: GGG | 0.17 | 2.66 | 2.57 | [ |
Dy: SGGM | 5.113 (π) 5.686 (σ) 5.495 (eff) | 1.796 (π) 1.316 (σ) 1.476 (eff) | 0.843 (π) 1.243 (σ) 1.110 (eff) | This work |
Transitions 4F9/2→ | $\bar{\lambda}$/nm | Aed/s-1 | Amd/s-1 | β | τr/ms |
---|---|---|---|---|---|
6F1/2 | 1364 | 0.094 | 0 | 7.220×10-5 | 0.768 |
6F3/2 | 1270 | 0.066 | 0 | 5.055×10-5 | - |
6F5/2 | 1157 | 9.804 | 0 | 7.526×10-3 | - |
6F7/2 | 998 | 4.534 | 8.413 | 9.939×10-3 | - |
6H5/2 | 921 | 3.577 | 0 | 2.746×10-3 | - |
6H7/2+6F9/2 | 833 | 27.488 | 13.568 | 0.032 | - |
6H9/2+6F11/2 | 756 | 45.544 | 81.59 | 0.098 | - |
6H11/2 | 665 | 86.029 | 17.474 | 0.079 | - |
6H13/2 | 574 | 841.755 | 0 | 0.646 | - |
6H15/2 | 481 | 162.738 | 0 | 0.125 | - |
Table 5 Calculated spontaneous emission probability, fluorescence branching ratio, and radiative lifetime of Dy: SGGM crystal
Transitions 4F9/2→ | $\bar{\lambda}$/nm | Aed/s-1 | Amd/s-1 | β | τr/ms |
---|---|---|---|---|---|
6F1/2 | 1364 | 0.094 | 0 | 7.220×10-5 | 0.768 |
6F3/2 | 1270 | 0.066 | 0 | 5.055×10-5 | - |
6F5/2 | 1157 | 9.804 | 0 | 7.526×10-3 | - |
6F7/2 | 998 | 4.534 | 8.413 | 9.939×10-3 | - |
6H5/2 | 921 | 3.577 | 0 | 2.746×10-3 | - |
6H7/2+6F9/2 | 833 | 27.488 | 13.568 | 0.032 | - |
6H9/2+6F11/2 | 756 | 45.544 | 81.59 | 0.098 | - |
6H11/2 | 665 | 86.029 | 17.474 | 0.079 | - |
6H13/2 | 574 | 841.755 | 0 | 0.646 | - |
6H15/2 | 481 | 162.738 | 0 | 0.125 | - |
Crystals | $\bar{\lambda}$/nm | FWHM/nm | σem/(×10-21, cm2) | τr/ms | τf/ms | η/% | Ref. |
---|---|---|---|---|---|---|---|
Dy:LiNbO3 | 575 | - | 3.2 (π) 0.3 (σ) | 0.292 | 0.268 | 91.8 | [ |
Dy:YAG | 583 | - | 2.09 | 1.02 | 0.4 | 39.2 | [ |
Dy: CaYAlO4 | 580 | - | 2.8 (π) 3.6 (σ) | 0.485 | 0.262 | 54.0 | [ |
Dy:CaGdAlO4 | 578 | 13(π) 14 (σ) | 0.55 (π) 0.51 (σ) | 0.501 | 0.222 | 44.3 | [ |
Dy:Sr3Y(BO3)3 | 576 | 16 (σ) 17 (π) | 1.0 (σ) 1.2 (π) | 1.45 | 0.820 | 56.6 | [ |
Dy: CNGS | 572 | 16.3 (σ) 15.8 (π) | 1.35 (σ) 1.89 (π) | 1.22 | 0.293 | 26.5 | [ |
Dy:GGG | 581 | - | 2.62 | 1.107 | 0.79 | 71.4 | [ |
Dy:SGGM | 574 | 15.6(π) 16.2(σ) | 1.84 (π) 2.49 (σ) | 0.768 | 0.531 | 69.1 | This work |
Table 6 Comparative spectral features of some Dy3+-doped crystals
Crystals | $\bar{\lambda}$/nm | FWHM/nm | σem/(×10-21, cm2) | τr/ms | τf/ms | η/% | Ref. |
---|---|---|---|---|---|---|---|
Dy:LiNbO3 | 575 | - | 3.2 (π) 0.3 (σ) | 0.292 | 0.268 | 91.8 | [ |
Dy:YAG | 583 | - | 2.09 | 1.02 | 0.4 | 39.2 | [ |
Dy: CaYAlO4 | 580 | - | 2.8 (π) 3.6 (σ) | 0.485 | 0.262 | 54.0 | [ |
Dy:CaGdAlO4 | 578 | 13(π) 14 (σ) | 0.55 (π) 0.51 (σ) | 0.501 | 0.222 | 44.3 | [ |
Dy:Sr3Y(BO3)3 | 576 | 16 (σ) 17 (π) | 1.0 (σ) 1.2 (π) | 1.45 | 0.820 | 56.6 | [ |
Dy: CNGS | 572 | 16.3 (σ) 15.8 (π) | 1.35 (σ) 1.89 (π) | 1.22 | 0.293 | 26.5 | [ |
Dy:GGG | 581 | - | 2.62 | 1.107 | 0.79 | 71.4 | [ |
Dy:SGGM | 574 | 15.6(π) 16.2(σ) | 1.84 (π) 2.49 (σ) | 0.768 | 0.531 | 69.1 | This work |
[1] |
LEE H I, LIM Y Y, KIM B J, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatologic Surgery, 2010, 36(6): 885.
DOI PMID |
[2] |
KIM J Y, PARK H S, KIM S Y. Short-term efficacy of subthreshold micropulse yellow laser (577-nm) photocoagulation for chronic central serous chorioretinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253(12): 2129.
DOI PMID |
[3] |
SINHA S, LANGROCK C, DIGONNET M J, et al. Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator. Optics Letters, 2006, 31(3): 347.
PMID |
[4] |
CHEN Y F, TSAI S W. Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing. Optics Letters, 2002, 27(6): 397.
DOI URL |
[5] | VILERA M, CHRISTENSEN M, HANSEN A K, et al. 2.7 W diffraction-limited yellow lasers by efficient frequency doubling of high-brightness tapered diode lasers. Optics Communications, 2019, 435: 145. |
[6] |
XU J, XU X D, HOU W T, et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 2019, 34(6): 573.
DOI |
[7] |
BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers. Optics Express, 2012, 20(12): 12906.
DOI PMID |
[8] |
BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Optical Letter, 2014, 39(23): 6628.
DOI URL |
[9] |
JU Q, SHEN H, YAO W M, et al. Laser diode pumped Dy: YAG yellow laser. Chinese Journal of Lasers, 2017, 44(4): 0401004.
DOI URL |
[10] |
YANG J X, LI W, WANG Y, et al. Spectroscopic and yellow Laser features of Dy3+: Y3Al5O12 single crystals. Journal of Inorganic Materials, 2023, 38(3): 350.
DOI URL |
[11] | GAO X q, FANG G y, WANG Y, et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. Journal of Alloys and Compounds, 2021, 856: 158083. |
[12] |
FANG G Y, WANG Y, YOU Z Y, et al. Crystal growth, spectral properties and energy transfer mechanisms of Sr3Gd(BO3)3:Dy3+/RE3+(RE=Tb, Eu) crystals. Chinese Journal of Luminescence, 2022, 43(11): 1721.
DOI URL |
[13] | LONG S W, MA D C, ZHU Y Z, et al. Temperature dependence of white light emission and energy transfer in Dy3+ and Tm3+ co-doped LiNbO3 single crystals. Journal of Luminescence, 2017, 192: 728. |
[14] |
ZHANG Y Y, YIN X, YU H H, et al. Growth and piezoelectric properties of melilite ABC3O7crystals. Crystal Growth & Design, 2011, 12(2): 622.
DOI URL |
[15] | XIA H P, FENG J H, JI Y X, et al. 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals. Journal of Quantitative Spectroscopy and Radiative Transfer 2016, 173: 7. |
[16] |
WANG Y, SUN C T, TU C Y, et al. Melilite-type oxide SrGdGa3O7: bulk crystal growth and theoretical studies upon both chemical bonding theory of single crystal growth and DFT methods. Crystal Growth & Design, 2018, 18(3): 1598.
DOI URL |
[17] |
ZHANG Y Y, ZHANG H J, YU H H, et al. Synthesis, growth, and characterization of Nd-doped SrGdGa3O7 crystal. Journal of Applied Physics, 2010, 108(6): 063534.
DOI URL |
[18] | XIA H P, FENG J H, WANG Y, et al. Evaluation of spectroscopic properties of Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal for use in mid-infrared lasers. Science Reports, 2015, 5: 13988. |
[19] |
KRÄNKEL C, MARZAHL D-T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews, 2016, 10(4): 548.
DOI URL |
[20] | YANG Y L, ZHANG L H, LI S M, et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal. Journal of Luminescence, 2019, 215: 166707. |
[21] | CHEN H, LOISEAU P, AKA G. Optical properties of Dy3+-doped CaYAlO4 crystal. Journal of Luminescence, 2018, 199: 509. |
[22] | XU X D, HU Z W, LI R J, et al. Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers. Optical Materials, 2017, 66: 469. |
[23] | PAN Y X, ZHOU S D, LI D Z, et al. Growth and optical properties of Dy:Y3Al5O12 crystal. Physica B: Condensed Matter, 2018, 530: 317. |
[24] |
OFELT G S. Intensities of crystal spectra of rare-earth ions. The Journal of Chemical Physics, 1962, 37(3): 511.
DOI URL |
[25] |
JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127(3): 750.
DOI URL |
[26] | SHI Z L, LI Q, XUE Y Y, et al. Spectroscopic characterizations of Dy: PbWO4 crystal. Journal of Luminescence, 2021, 236: 118130. |
[27] | CHEN X T, HUANG Y S, YUAN F F, et al. A novel yellow laser candidate: Dy3+ doped Ca3NbGa3Si2O14 crystal. Journal of Crystal Growth, 2021, 564: 126114. |
[28] | JIANG T H, CHEN Y J, GONG X H, et al. Spectroscopic properties of Dy3+-doped Sr3Y(BO3)3 crystal. Optical Materials, 2019, 91: 171. |
[29] | ZEKRI M, HERRMANN A, TURKI R, et al. Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. Journal of Luminescence, 2019, 212: 354. |
[30] |
VIJAYA BABU K, COLE S. Luminescence properties of Dy3+-doped alkali lead alumino borosilicate glasses. Ceramics International, 2018, 44(8): 9080.
DOI URL |
[31] |
WANG Y, YOU Z Y, LI J F, et al. Optical properties of Dy3+ion in GGG laser crystal. Journal of Physics D: Applied Physics, 2010, 43(7): 075402.
DOI |
[32] | POONAM, SHIVANI, ANU, et al. Judd-Ofelt parameterization and luminescence characterization of Dy3+ doped oxyfluoride lithium zinc borosilicate glasses for lasers and w-LEDs. Journal of Non-Crystalline Solids, 2020, 544: 120187. |
[33] | RUKMINI E, JAYASANKAR C K. Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Physica B: Condensed Matter, 1997, 240: 273. |
[34] |
BIGOTTA S, TONELLI M, CAVALLI E, et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers. Journal of Luminescence, 2010, 130(1): 13.
DOI URL |
[35] |
RYBA-ROMANOWSKI W, DOMINIAK-DZIK G, SOLARZ P, et al. Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: a comparative study. Optical Materials, 2009, 31(11): 1547.
DOI URL |
[36] |
SARDAR D K, BRADLEY W M, YOW R M, et al. Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host. Journal of Luminescence, 2004, 106(3): 195.
DOI URL |
[37] |
AULL B, JENSSEN H. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE Journal of Quantum Electronics, 1982, 18(5): 925.
DOI URL |
[38] | MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application, 1992, 17: 12590. |
[39] | LIU Y Y, TU C Y. Research progress on Dy-activated crystals to realize yellow emission in one step via commercial blue LD pumping. Progress in Solid State Chemistry, 2022, 67: 100368. |
[40] | LIU Y, PAN F, TU C, et al. Structure, first-principles calculations and yellow spectral properties of Dy3+: CaLaGa3O7 single crystal. Journal of Luminescence, 2021, 236: 118122. |
[1] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[2] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. |
[3] | QIN Juan, LIANG Dandan, SUN Jun, YANG Jinfeng, HAO Yongxin, LI Qinglian, ZHANG Ling, XU Jingjun. Flat Shoulder Congruent Lithium Niobate Crystals Grown by the Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(8): 978-986. |
[4] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[5] | YANG Jiaxue, LI Wen, WANG Yan, ZHU Zhaojie, YOU Zhenyu, LI Jianfu, TU Chaoyang. Spectroscopic and Yellow Laser Features of Dy3+: Y3Al5O12 Single Crystals [J]. Journal of Inorganic Materials, 2023, 38(3): 350-356. |
[6] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. |
[7] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
[8] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[9] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | DENG Taoli, CHEN Hexin, HEI Lingli, LI Shuxing, XIE Rongjun. Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters [J]. Journal of Inorganic Materials, 2022, 37(8): 891-896. |
[12] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[13] | XU Jiayue, LI Zhichao, PAN Yunfang, ZHOU Ding, WEN Feng, MA Wenjun. Research Progress of Hyperstoichiometric UO2 Crystals [J]. Journal of Inorganic Materials, 2020, 35(11): 1183-1192. |
[14] | Rong-Hui LI, Yi-Zheng JIA, Nan-Nan HU. 3D Hierarchical Flower Like Alumina Nanomaterials: Preparation and Arsenic Removal Performance [J]. Journal of Inorganic Materials, 2019, 34(5): 553-559. |
[15] | WANG Dong-Hai, XUE Yan-Yan, LI Na, ZHOU Shi-Ming, XU Xiao-Dong, LI Dong-Zhen, XU Jun, WANG Qing-Guo. Micro-tube Sapphire Crystal Grown by the Edge-defined-film Fed Method [J]. Journal of Inorganic Materials, 2019, 34(12): 1290-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||