Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (5): 529-536.DOI: 10.15541/jim20220576
Special Issue: 【能源环境】污染物去除(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
GUO Chunxia(), CHEN Weidong(
), YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen
Received:
2022-09-29
Revised:
2022-12-15
Published:
2022-12-28
Online:
2022-12-28
Contact:
CHEN Weidong, professor. E-mail: weidongch@163.comAbout author:
GUO Chunxia (1991-), female, PhD candidate, lecturer. E-mail: chunchun123.cool@imut.edu.cn
Supported by:
CLC Number:
GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material[J]. Journal of Inorganic Materials, 2023, 38(5): 529-536.
Fig. 2 Morphologies and element distribution of HNT and ZrO2/HNT (a, b) TEM images of HNT (a) and ZrO2/HNT (b); (c) HRTEM image of ZrO2/HNT; (d-i) TEM-EDS mapping images of ZrO2/HNT-As(V) (d), Al (e), Si (f), O (g), Zr (h), and As (i)
Model | Parameter | ||
---|---|---|---|
Psedo-first-order | Qe/(mg•g-1) | K1/min-1 | R2 |
20.49 | 0.6985 | 0.924 | |
Psedo-second-order | Qe/(mg•g-1) | K2/(g•mg-1•min-1) | R2 |
21.16 | 0.0548 | 0.984 |
Table 1 Adsorption kinetics parameters for As(V) adsorption on ZrO2/HNT
Model | Parameter | ||
---|---|---|---|
Psedo-first-order | Qe/(mg•g-1) | K1/min-1 | R2 |
20.49 | 0.6985 | 0.924 | |
Psedo-second-order | Qe/(mg•g-1) | K2/(g•mg-1•min-1) | R2 |
21.16 | 0.0548 | 0.984 |
Isotherm model | Parameter | Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir model | Qm/(mg•g-1) | 27.45819 | 30.03619 | 31.59709 |
kL/(L•mg-1) | 1.75844 | 2.36858 | 3.45464 | |
R2 | 0.9972 | 0.9994 | 0.9999 | |
Freundlich model | n | 9.30552 | 9.26368 | 9.98317 |
kF/(mg1-(1/n)•L1/n•g-1) | 17.15745 | 18.92668 | 20.52261 | |
R2 | 0.7370 | 0.76954 | 0.74909 | |
D-R model | qm/(mol•g-1) | 8.09×10-4 | ||
β/(mol2•kJ-2) | 4.42×10-9 | |||
E/(kJ•mol-1) | 10.64 | |||
R2 | 0.94213 |
Table 2 Fitting results of isotherms for As(V) adsorption onto ZrO2/HNT
Isotherm model | Parameter | Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir model | Qm/(mg•g-1) | 27.45819 | 30.03619 | 31.59709 |
kL/(L•mg-1) | 1.75844 | 2.36858 | 3.45464 | |
R2 | 0.9972 | 0.9994 | 0.9999 | |
Freundlich model | n | 9.30552 | 9.26368 | 9.98317 |
kF/(mg1-(1/n)•L1/n•g-1) | 17.15745 | 18.92668 | 20.52261 | |
R2 | 0.7370 | 0.76954 | 0.74909 | |
D-R model | qm/(mol•g-1) | 8.09×10-4 | ||
β/(mol2•kJ-2) | 4.42×10-9 | |||
E/(kJ•mol-1) | 10.64 | |||
R2 | 0.94213 |
Adsorbent | pH | Adsorption capacity/ (mg•g-1) | Ref. |
---|---|---|---|
ZrO2/multiwall carbon nanotube | 6 | 5 | [ |
Ferric oxyhydroxides/ activated carbon | 7 | 5 | [ |
Cerium-loaded cation exchange resin | 5-6 | 1.03 | [ |
Hydrous zirconium oxide/D401 | 3.16 | 11.84 | [ |
Magnetic iron oxide/ carbon encapsulates | 7 | 17.9 | [ |
Fe3O4-MnO2/graphite | 2-12 | 12.2 | [ |
ZrO2/sawdust | 3-11 | 12 | [ |
Iron oxide/carbon nanotubes | 5.5 | 9.74 | [ |
γ-Fe2O3 cores coated with ZrO2 | 9 | 18.3 | [ |
ZrO2/HNT | 3 | 27.46 | This study |
Table 3 Comparison of ZrO2/HNT with other reported similar adsorbents for As(V) adsorption
Adsorbent | pH | Adsorption capacity/ (mg•g-1) | Ref. |
---|---|---|---|
ZrO2/multiwall carbon nanotube | 6 | 5 | [ |
Ferric oxyhydroxides/ activated carbon | 7 | 5 | [ |
Cerium-loaded cation exchange resin | 5-6 | 1.03 | [ |
Hydrous zirconium oxide/D401 | 3.16 | 11.84 | [ |
Magnetic iron oxide/ carbon encapsulates | 7 | 17.9 | [ |
Fe3O4-MnO2/graphite | 2-12 | 12.2 | [ |
ZrO2/sawdust | 3-11 | 12 | [ |
Iron oxide/carbon nanotubes | 5.5 | 9.74 | [ |
γ-Fe2O3 cores coated with ZrO2 | 9 | 18.3 | [ |
ZrO2/HNT | 3 | 27.46 | This study |
Thermodynamic parameter | |||
---|---|---|---|
Temperature/℃ | ΔG°/ (kJ•mol-1) | ΔH°/ (kJ•mol-1) | ΔS°/ (kJ•mol-1•K-1) |
25 | -20.41 | 37.75 | 0.19 |
35 | -21.96 | ||
45 | -24.33 |
Table 4 Temperature-dependent thermodynamic characteristics of As(V) adsorption on ZrO2/HNT
Thermodynamic parameter | |||
---|---|---|---|
Temperature/℃ | ΔG°/ (kJ•mol-1) | ΔH°/ (kJ•mol-1) | ΔS°/ (kJ•mol-1•K-1) |
25 | -20.41 | 37.75 | 0.19 |
35 | -21.96 | ||
45 | -24.33 |
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater. Science, 2020, 368(6493): 845.
DOI PMID |
[2] |
UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 2015, 151: 326.
DOI PMID |
[3] |
ZHANG Y, LIU H, GAO F, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4(4): 100078.
DOI URL |
[4] |
LIU X, VERMA G, CHEN Z, et al. Metal-organic framework nanocrystal-derived hollow porous materials: synthetic strategies and emerging applications. The Innovation, 2022, 3(5): 100281.
DOI URL |
[5] |
WANG X X, LI X, WANG J Q, et al. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Journal of Inorganic Materials, 2020, 35(3): 260.
DOI |
[6] |
ZHENG Y M, YU L, WU D, et al. Removal of arsenite from aqueous solution by a zirconia nanoparticle. Chemical Engineering Journal, 2012, 188: 15.
DOI URL |
[7] |
SHEHZAD K, AHMAD M, XIE C, et al. Mesoporous zirconia nanostructures (MZN) for adsorption of As(III) and As(V) from aqueous solutions. Journal of Hazardous Materials, 2019, 373: 75.
DOI PMID |
[8] |
HE X Y, DENG F, SHEN T T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539: 223.
DOI PMID |
[9] | SHAO P H, DING L, LUO J F, et al. Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: a combined experimental and theoretical study. ACS Applied Materials & Interfaces, 2019, 11(33): 29736. |
[10] |
LATA S, SAMADDER S R. Removal of arsenic from water using nano adsorbents and challenges: a review. Journal of Environmental Management, 2016, 166: 387.
DOI PMID |
[11] | LUO J M, LUO X B, HU C Z, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Applied Materials & Interfaces, 2016, 8(29): 18912. |
[12] |
ADDO NTIM S, MITRA S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. Journal of Colloid and Interface Science, 2012, 375(1): 154.
DOI PMID |
[13] | SARKAR A, PAUL B. Evaluation of the performance of zirconia- multiwalled carbon nanotube nanoheterostructures in adsorbing As(III) from potable water from the perspective of physical chemistry and chemical physics with a special emphasis on approximate site energy distribution. Chemosphere, 2020, 242: 15. |
[14] |
SARKAR A, PAUL B. Analysis of the performance of zirconia- multiwalled carbon nanotube nanoheterostructures in adsorbing As(V) from potable water from the aspects of physical chemistry with an emphasis on adsorption site energy distribution and density functional theory calculations. Microporous and Mesoporous Materials, 2020, 302: 110191.
DOI URL |
[15] | YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 2015, 112: 75. |
[16] |
LVOV Y, WANG W, ZHANG L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 2016, 28(6): 1227.
DOI URL |
[17] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5): 517.
DOI URL |
[18] |
STYBLO M, DEL RAZO L M, VEGA L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 2000, 74(6): 289.
DOI PMID |
[19] |
CAI N, DAI Q, WANG Z L, et al. Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. Journal of Materials Science, 2015, 50(3): 1435.
DOI URL |
[20] |
ZHENG P W, DU Y Y, MA X F. Selective fabrication of iron oxide particles in halloysite lumen. Materials Chemistry and Physics, 2015, 151: 14.
DOI URL |
[21] |
SEREDYCH M, BANDOSZ T J. Effects of surface features on adsorption of SO2on graphite oxide/Zr(OH)4 composites. Journal of Physical Chemistry C, 2010, 114(34): 14552.
DOI URL |
[22] |
SHEHZAD K, AHMAD M, HE J Y, et al. Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficient removal of As(III) from aqueous solutions. Journal of Colloid and Interface Science, 2019, 533: 588.
DOI URL |
[23] |
HE Q, YANG D, DENG X L, et al. Preparation, characterization and application of N-2-pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb(II). Water Research, 2013, 47(12): 3976.
DOI URL |
[24] | SONG Y R, YUAN P, DU P X, et al. A novel halloysite-CeOx nanohybrid for efficient arsenic removal. Applied Clay Science, 2020, 186: 10. |
[25] |
SONG X L, ZHOU L, ZHANG Y, et al. A novel cactus-like Fe3O4/halloysite nanocomposite for arsenite and arsenate removal from water. Journal of Cleaner Production, 2019, 224: 573.
DOI URL |
[26] |
ARCIBAR-OROZCO J A, AVALOS-BORJA M, RANGEL-MENDEZ J R. Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water. Environmental Science & Technology, 2012, 46(17): 9577.
DOI URL |
[27] |
HE Z L, TIAN S L, NING P. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. Journal of Rare Earths, 2012, 30(6): 563.
DOI URL |
[28] |
LI C H, XU W, JIA D M, et al. Removal of arsenic from drinking water by using the Zr-loaded resin. Journal of Chemical and Engineering Data, 2013, 58(2): 427.
DOI URL |
[29] |
WU Z X, LI W, WEBLEY P A, et al. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Advanced Materials, 2012, 24(4): 485.
DOI URL |
[30] |
CHANDRA V, PARK J, CHUN Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979.
DOI PMID |
[31] | SETYONO D, VALIYAYEETTIL S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2722. |
[32] |
MA J, ZHU Z L, CHEN B, et al. One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. Journal of Materials Chemistry A, 2013, 1(15): 4662.
DOI URL |
[33] |
FENG C, ALDRICH C, EKSTEEN J J, et al. Removal of arsenic from alkaline process waters of gold cyanidation by use of gamma- Fe2O3@ZrO2nanosorbents. Hydrometallurgy, 2017, 174: 71.
DOI URL |
[34] |
LIANG Q W, LUO H J, GENG J J, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI). Chemical Engineering Journal, 2018, 338: 62.
DOI URL |
[35] | LI R, YANG W, SU Y, et al. Ionic potential: a general material criterion for the selection of highly efficient arsenic adsorbents. Journal of Materials Science & Technology, 2014, 30(10): 949. |
[36] |
SUN T Y, ZHAO Z W, LIANG Z J, et al. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2- Fe3O4 magnetic nanoparticles. Applied Surface Science, 2017, 416: 656.
DOI URL |
[1] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[2] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[3] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[4] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[5] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[6] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[7] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[8] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[9] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[10] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[11] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[12] | WANG Yaning, ZHANG Yuqi, SONG Suocheng, CHEN Ruomeng, LIU Yaxiong, DUAN Yugang. Laser Stereolithography for Zirconia Ceramic Fabrication and Its Debinding and Sintering Process [J]. Journal of Inorganic Materials, 2022, 37(3): 303-309. |
[13] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[14] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[15] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||