Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (5): 544-552.DOI: 10.15541/jim20220532
Special Issue: 【结构材料】热障与环境障涂层(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													FAN Dong1,2(
), ZHONG Xin1(
), WANG Yawen1, ZHANG Zhenzhong2(
), NIU Yaran1, LI Qilian3, ZHANG Le3, ZHENG Xuebin1
												  
						
						
						
					
				
Received:2022-09-13
															
							
																	Revised:2022-10-06
															
							
															
							
																	Published:2022-10-28
															
							
																	Online:2022-10-28
															
						Contact:
								ZHONG Xin, assistant professor. E-mail: zhongxin@mail.sic.ac.cn;About author:FAN Dong (1998-), male, Master candidate. E-mail: fandong1998@126.com				
													Supported by:CLC Number:
FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings:[J]. Journal of Inorganic Materials, 2023, 38(5): 544-552.
| Parameter | RE2SiO5 (RE=Gd, Y, Er) | 
|---|---|
| Primary Ar/(L·min-1) | 43 | 
| Secondary H2/(L·min-1) | 12 | 
| Carrier Ar/(L·min-1) | 2.3 | 
| Spray distance/mm | 230 | 
Table 1 Technical parameters used for plasma spraying
| Parameter | RE2SiO5 (RE=Gd, Y, Er) | 
|---|---|
| Primary Ar/(L·min-1) | 43 | 
| Secondary H2/(L·min-1) | 12 | 
| Carrier Ar/(L·min-1) | 2.3 | 
| Spray distance/mm | 230 | 
| XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 | 
|---|---|---|---|---|
| CMAS | 27.87 | 8.79 | 26.22 | 38.52 | 
Table 2 Chemical compositions of CMAS powders
| XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 | 
|---|---|---|---|---|
| CMAS | 27.87 | 8.79 | 26.22 | 38.52 | 
| EDS/ (%, in atom)  |  Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — | 
| Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — | 
| Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — | 
| Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 | 
Table 3 EDS elemental compositions of the marked regions in Fig. 3
| EDS/ (%, in atom)  |  Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — | 
| Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — | 
| Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — | 
| Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 | 
| EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — | 
| Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 | 
| Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — | 
| Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 | 
| Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 | 
| Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — | 
| Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 | 
| Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 | 
Table 4 EDS elemental compositions of the marked regions in Fig. 4
| EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — | 
| Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 | 
| Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — | 
| Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 | 
| Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 | 
| Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — | 
| Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 | 
| Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 | 
| EDS/ (%, in atom)  |  Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — | 
| Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 | 
| Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — | 
| Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 | 
| Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 | 
| Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — | 
| Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 | 
Table 5 EDS elemental compositions of the marked regions in Fig. 5
| EDS/ (%, in atom)  |  Gd | Y | Er | Si | O | Ca | Al | Mg | 
|---|---|---|---|---|---|---|---|---|
| Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — | 
| Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 | 
| Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — | 
| Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 | 
| Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 | 
| Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — | 
| Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 | 
																													Fig. 6 Schematic diagrams of different coatings under CMAS molten salt corrosion at 1400 ℃ (a) Reaction process; (b) X1-Gd2SiO5; (c) X2-Y2SiO5; (d) X2-Er2SiO5
| [1] |  
											 PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016,  15(8): 804. 
																							 DOI PMID  | 
										
| [2] |  
											 RAJ R. Fundamental research in structural ceramics for service near 2000 ℃. Journal of the American Ceramic Society, 1993,  76(9): 2147. 
																							 DOI URL  | 
										
| [3] |  
											 EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002,  22(14-15): 2741. 
																							 DOI URL  | 
										
| [4] |  
											 LIU P P, ZHONG X, ZHANG L, et al. Molten salt corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coating. Journal of Inorganic Materials, 2022,  37(12): 1267. 
																							 DOI  | 
										
| [5] |  
											 OPILA E J. Oxidation and volatilization of silica formers in water vapor. Journal of the American Ceramic Society, 2003,  86(8): 1238. 
																							 DOI URL  | 
										
| [6] |  
											 ZHANG X F, SONG J B, DENG Z Q, et al. Interface evolution of Si/Mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020,  40(4): 1478. 
																							 DOI URL  | 
										
| [7] |  
											 TIAN Z L, ZHENG L Y, WANG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE= Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016,  36(1): 189. 
																							 DOI URL  | 
										
| [8] |  
											 ZHANG X F, ZHOU K S, LIU M, et al. Preparation of Si/Mullite/Yb2SiO5environment barrier coating (EBC) by plasma spray-physical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018,  33(3): 325. 
																							 DOI URL  | 
										
| [9] | SUMMERS W D, POERSCHKE D L, TAYLOR A A, et al. Reactions of molten silicate deposits with yttrium monosilicate. Journal of the European Ceramic Society, 2020, 103(4): 2919. | 
| [10] |  
											 STOLZENBURG F, KENESEI P, ALMER J, et al. The influence of calcium-magnesium-aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Materialia, 2016,  105: 189. 
																							 DOI URL  | 
										
| [11] | WANG C, ZHANG X F, ZHOU K S, et al. Nano-composite structured environmental barrier coatings prepared by plasma spray- physical vapor deposition and their thermal cycle performance. Rare Metal Materials and Engineering, 2019, 48(11): 3455. | 
| [12] |  
											 LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs. Ceramics International, 2022,  48(5): 7082. 
																							 DOI URL  | 
										
| [13] |  
											 LEE K N. Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life. Journal of the American Ceramic Society, 2019,  102(3): 1507. 
																							 DOI URL  | 
										
| [14] |  
											 WANG J G, TIAN S J, LI G B, et al. Preparation and X-ray characterization of low-temperature phases of R2SiO5 (R=rare earth elements). Materials of Research Bulletin, 2001, 36: 1855. 
																							 DOI URL  | 
										
| [15] |  
											 WOLF M, MACK D E, GUILLO O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium- aluminosilicate (CMAS): a comparative study. Journal of the American Ceramic Society, 2020,  103(12): 7056. 
																							 DOI URL  | 
										
| [16] |  
											 JIANG F R, CHENG L F, WANG Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceramics International, 2017,  43(12): 9019. 
																							 DOI URL  | 
										
| [17] |  
											 ZHONG X, WANG Y W, LIU P P, et al. Effects of microstructure on corrosion behaviors for RE2SiO5 (RE=Gd, Y, Er) environmental barrier coatings against calcium-magnesium-alumino-silicate melts. Corrosion Science, 2022,  199: 110174. 
																							 DOI URL  | 
										
| [18] |  
											 TIAN Z L, REN X M, LEI Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. Journal of the European Ceramic Society, 2019,  39(14): 4245. 
																							 DOI URL  | 
										
| [19] |  
											 LIU P P, ZHONG X, NIU Y R, et al. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022,  197: 110069. 
																							 DOI URL  | 
										
| [20] |  
											 STOKES J L, HARDER B J, WIESNER V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. Journal of the American Ceramic Society, 2019,  103(1): 622. 
																							 DOI URL  | 
										
| [21] |  
											 SUMMERS W D, POERSCHKE D L, PARK D, et al. Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Materialia, 2018,  160: 34. 
																							 DOI URL  | 
										
| [22] |  
											 LEVI C G, JOHN W H, MARIE V S, et al. Environmental degradation of thermal barrier coatings by molten deposits. MRS Bulletin, 2012,  37: 932. 
																							 DOI URL  | 
										
| [23] |  
											 BONDAR I A, Rare-earth silicates. Ceramics International, 1982,  8: 83. 
																							 DOI URL  | 
										
| [24] | FELSCHE J. The crystal chemistry of the rare-earth silicates. Materials Science and Chemistry, 1973, 13: 99. | 
| [25] |  
											 ZHONG X, NIU Y R, LI H, et al. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. Journal of the American Ceramic Society. 2017,  100(5): 1896. 
																							 DOI URL  | 
										
| [26] |  
											 POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annual Review of Materials Research, 2017,  47: 297. 
																							 DOI URL  | 
										
| [27] |  
											 LI Y R, WANG J M, WANG J Y. Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). Journal of the European Ceramic Society, 2020,  40(7): 2658. 
																							 DOI URL  | 
										
| [1] | LIANG Ruihui, ZHONG Xin, HONG Du, HUANG Liping, NIU Yaran, ZHENG Xuebin. High-temperature Water Vapor Corrosion Behaviors of Environmental Barrier Coatings with Yb2O3-modified Silicon Bond Layer [J]. Journal of Inorganic Materials, 2025, 40(4): 425-432. | 
| [2] | FAN Wenkai, YANG Xiao, LI Honghua, LI Yong, LI Jiangtao. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159-167. | 
| [3] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. | 
| [4] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. | 
| [5] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. | 
| [6] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. | 
| [7] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. | 
| [8] | LIU Pingping, ZHONG Xin, ZHANG Le, LI Hong, NIU Yaran, ZHANG Xiangyu, LI Qilian, ZHENG Xuebin. Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1267-1274. | 
| [9] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. | 
| [10] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. | 
| [11] | WANG Peng, WANG Qing-Lei, ZHANG Xiang-Yu, YANG Jin-Shan, ZHOU Hai-Jun, HU Jian-Bao, DING Yu-Sheng, DONG Shao-Ming. Oxidation Behavior of SiCf/SiC Composites Modified by Layered-Y2Si2O7 in Wet Oxygen Environment [J]. Journal of Inorganic Materials, 2019, 34(8): 904-908. | 
| [12] | ZHANG Xiao-Feng, ZHOU Ke-Song, LIU Min, DENG Chun-Ming, NIU Shao-Peng, XU Shi-Ming. Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD) [J]. Journal of Inorganic Materials, 2018, 33(3): 325-330. | 
| [13] | ZHANG Xiao-Feng, ZHOU Ke-Song, SONG Jin-Bing, DENG Chun-Ming, NIU Shao-Peng, DENG Zi-Qian. Deposition and CMAS Corrosion Mechanism of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition [J]. Journal of Inorganic Materials, 2015, 30(3): 287-293. | 
| [14] | LU Lin-Jing, CHENG Lai-Fei, HONG Zhi-Liang, WANG Yi-Guang, ZHANG Li-Tong. Fabrication and Water-vapor Corrosion Resistance of Ba0.25Sr0.75Al2Si2O8 Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2011, 26(7): 701-706. | 
| [15] | WU Jiang,LIN Hong,LI Jian-Bao,LI Jun-Feng. Corrosion Behavior of AlNbO4/Mullite Composite as Environmental Barrier Coating in Water Vapor Environment [J]. Journal of Inorganic Materials, 2010, 25(4): 445-448. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||