Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (7): 673-684.DOI: 10.15541/jim20200404
Special Issue: 【虚拟专辑】气凝胶,玻璃(2020~2021)
• REVIEW • Next Articles
PENG Fei(), JIANG Yonggang(
), FENG Jian(
), CAI Huafei, FENG Junzong, LI Liangjun
Received:
2020-07-20
Revised:
2020-09-17
Published:
2021-07-20
Online:
2020-10-30
Contact:
JIANG Yonggang, associate professor. E-mail:jygemail@nudt.edu.cn;FENG Jian, professor. E-mail:fengj@nudt.edu.cn
About author:
PENG Fei (1985-), male, PhD candidate. E-mail: feijigong@126.com
Supported by:
CLC Number:
PENG Fei, JIANG Yonggang, FENG Jian, CAI Huafei, FENG Junzong, LI Liangjun. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(7): 673-684.
Fig. 2 Alumina-silica aerogels after heat-treatment[39] (a) Specific surface areas of aerogels with different molar ratios of Si; (b) TEM photos of the pristine alumina aerogel (AA-1300) and alumina-silica aerogel calcined at 1300 ℃(ASA81-1300); (c) Distribution and atomic ratio of Si and Al in the aerogel with a theoretical Si/Al molar ratio of 0.125:1 (Bars representing 20 nm; the red and green color representing Si and Al, respectively)
Fig. 3 Si-modified alumina aerogels[47] (a) Deposition modification of the gels; (b) Macro and (c) Micro changing of pristine and Si-modified alumina aerogels after heat-treatment at 1300 ℃
Fig. 7 Zirconia fiber-based porous skeleton and the alumina-silica aerogel composite reinforced by the skeleton[37] Micro morphology of (a) skeleton and (b) composite, and (c) their mechanical properties
Fig. 9 Fiber reinforced alumina (alumina-silica) aerogel composites[55,56,57] (a) Influence of mass fraction of fibers on mechanical properties[55]; (b) Behavior of composites under compressive and bending loadings[56]; (c) Morphology and (d) bending/tensile strengths of composites with different fiber densities[57]
Fig. 10 Test site (a) and temperature curves (b) of the ceramic fiber reinforced alumina aerogel composite (15 mm in thickness) heated by a quartz lamp apparatus[56]
Fig. 12 Opacifier embedded mullite fiber felt reinforced alumina-silica aerogel composite[68] (a) Macro morphology; (b) Temperature curves of the composite (20 mm in thickness) during one-face heating test
Fig. 13 The mullite fiber felt reinforced alumina-silica aerogel composite doped with TiO2 (a) High-temperature thermal conductivity[47]; (b) High-temperature thermal conductivity of composites with different content of TiO2[54]; (c) Temperature (cold-face) of the composite (doped with 10wt% TiO2) fired by the flame of butane spray gun at 1300 ℃ for 15 min[54]; (d) Heat transfer mechanism of the composite (λs and λg refering to solid and gaseous thermal conductivity, respectively)[54]
Fig. 14 (a) Micro morphology of SiC modified mullite fibers; (b) Thermal conductivity of the alumina-silica aerogel composite reinforced by SiC modified mullite fibers[69]
[1] |
UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronautica, 2020,176:341-356.
DOI URL |
[2] | KOEBEL M M, RIGACCI A, ACHARD P. Aerogels Handbook, 2010: 607-632. |
[3] | CAI H, JIANG Y, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Materials & Design, 2020,191:108640. |
[4] |
WANG F, DOU L, DAI J, et al. In situ synjournal of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angewandte Chemie International Edition, 2020,59(21):8285-8292.
DOI URL |
[5] |
POCO J F, JR J H S, HRUBESH L W. Synthesis of high porosity, monolithic alumina aerogels. Journal of Non-Crystalline Solids, 2001,285:57-63.
DOI URL |
[6] | 高庆福, 张长瑞, 冯坚, 等. 低密度、块状氧化铝气凝胶制备. 无机化学学报, 2008,24(9):1456-1460. |
[7] |
ZU G, SHEN J, ZOU L, et al. Nanoengineering super heat-resistant, strong alumina aeroegels. Chemistry of Materials, 2013,25:4757-4764.
DOI URL |
[8] | ZU G, SHEN J, ZOU L, et al. Highly thermally stable zirconia/ silica composite aerogels prepared by supercritical deposition. Microporous and Mesoporous Materials, 2017,238:90-96. |
[9] |
SU L, WANG H, NIU M, et al. Ultralight, recoverable, and high temperature-resistant SiC nanowire aerogel. ACS Nano, 2018,12(4):3103-3111.
DOI URL |
[10] |
XU X, ZHANG Q, HAO M, et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019,363:723-727.
DOI URL |
[11] | 艾素芬, 孙言, 雷尧飞, 等. 低密度气凝胶的高温结构变化及其耐温性研究. 北京化工大学学报, 2019,46(1):63-68. |
[12] |
CAI H, JIANG Y, FENG J, et al. Nanostructure evolution of silica aerogels under rapid heating from 600 ℃ to 1300 ℃ via in-situ TEM observation. Ceramics International, 2020,46(8):12489-12498.
DOI URL |
[13] |
BAUMANN T F, GASH A E, CHINN S C, et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chemistry of Materials, 2005,17:395-401.
DOI URL |
[14] |
ZU G, SHEN J, WEI X, et al. Preparation and characterization of monolithic alumina aerogels. Journal of Non-Crystalline Solids, 2011,357:2903-2906.
DOI URL |
[15] |
WANG W, ZHANG Z, ZU G, et al. Trimethylethoxysilane- modified super heat-resistant alumina aerogels for high-temperature thermal insulation and adsorption applications. RSC Advances, 2014,4:54864-54871.
DOI URL |
[16] | 温培刚, 巢雄宇, 袁武华, 等. 耐高温氧化铝气凝胶研究进展. 材料导报, 2016,30(8):51-56. |
[17] | 李华鑫, 赵春林, 陈俊勇, 等. 氧化铝气凝胶研究进展. 金属世界, 2018(4):27-33. |
[18] |
PAKHARUKOVA V P, SHALYGIN A S, GERASIMOV E Y, et al. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. Journal of Solid State Chemistry, 2016,233:294-302.
DOI URL |
[19] |
BARARPOUR S T, KARAMI D, MAHINPEY N. Investigation of the effect of alumina-aerogel support on the CO2 capture performance of K2CO3. Fuel, 2019,242:124-132.
DOI URL |
[20] |
HURWITZ F I, GALLAGHER M, OLIN T C, et al. Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. International Journal of Applied Glass Science, 2014,5(3):276-286.
DOI URL |
[21] |
YOROV K E, YAPRYNTSEV A D, BARANCHIKOV A E, et al. Luminescent alumina-based aerogels modified with tris(8-hydroxyquinolinato)aluminum. Journal of Sol-Gel Science and Technology, 2018,86:400-409.
DOI URL |
[22] |
WEN S, REN H, ZHU J, et al. Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. Journal of Porous Materials, 2018,26:1027-1034.
DOI URL |
[23] |
ARAVIND P R, MUKUNDAN P, PILLAI P K, et al. Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid Sol-Gel route followed by subcritical drying. Microporous and Mesoporous Materials, 2006,96(1):14-20.
DOI URL |
[24] |
HAYASE G, NONOMURA K, HASEGAWA G, et al. Ultralow- density, transparent, superamphiphobic boehmite nanofiber aerogels and their alumina derivatives. Chemistry of Materials, 2015,27(1):3-5.
DOI URL |
[25] | 冯坚, 高庆福, 武纬, 等. 硅含量对Al2O3-SiO2气凝胶结构和性能的影响. 无机化学学报, 2009,25(10):1758-1763. |
[26] |
WU X, SHAO G, SHEN X, et al. Novel Al2O3-SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non- alkoxide Sol-Gel method. RSC Advances, 2016,6:5611-5620.
DOI URL |
[27] |
HOU X, ZHANG R, FANG D. Novel whisker-reinforced Al2O3- SiO2 aerogel composites with ultra-low thermal conductivity. Ceramics International, 2017,43:9547-9551.
DOI URL |
[28] |
YANG J, WANG Q, WANG T, et al. Facile one-step precursor- to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures. Journal of Porous Materials, 2017,24:889-897.
DOI URL |
[29] |
KARAMI D, MAHINPEY N. Utilization of alumina aerogel as high surface area support for the fabrication of oxygen carriers in the chemical looping combustion process. Energy & Fuels, 2019,33:5408-5414.
DOI URL |
[30] |
MIZUSHIMA Y, HORI M. Preparation of heat-resistant alumina aerogels. Journal of Materials Research, 1993,8(11):2993-2999.
DOI URL |
[31] |
OSAKI T, NAGASHIMA K, WATARI K, et al. Silica-doped alumina cryogels with high thermal stability. Journal of Non- Crystalline Solids, 2007,353:2436-2442.
DOI URL |
[32] |
JI X, ZHOU Q, QIU G, et al. Synthesis of an alumina enriched Al2O3-SiO2 aerogel: reinforcement and ambient pressure drying. Journal of Non-Crystalline Solids, 2017,471:160-168.
DOI URL |
[33] |
YU H, JIANG Y, LU Y, et al. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying. Journal of Non-Crystalline Solids, 2019,505:79-86.
DOI URL |
[34] |
HORIUCHI T, OSAKI T, SUGIYAMA T, et al. Maintenance of large surface area of alumina heated at elevated temperatures above 1300 ℃ by preparing silica-containing pseudoboehmite aerogel. Journal of Non-Crystalline Solids, 2001,291:187-198.
DOI URL |
[35] |
HURWITZ F I, GUO H, ROGERS R B, et al. Influence of Ti addition on boehmite-derived aluminum silicate aerogels: structure and propeties. Journal of Sol-Gel Science and Technology, 2012,64:367-374.
DOI URL |
[36] |
WU X, SHAO G, CUI S, et al. Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceramics International, 2016,42:874-882.
DOI URL |
[37] | ZHANG R, YE C, WANG B. Novel Al2O3-SiO2 aerogel/porous zirconia composite with ultralow thermal conductivity. Journal of Porous Materials, 2017. |
[38] | 张恩爽, 黄红岩, 刘韬, 等. 结构强健的 Al2O3-SiO2气凝胶的制备及可重复使用性能. 高等学校化学学报, 2019,40(12):2566-2573. |
[39] |
PENG F, JIANG Y, FENG J, et al. A facile method to fabricate monolithic alumina-silica aerogels with high surface areas and good mechanical properties. Journal of the European Ceramic Society, 2020,40(6):2480-2488.
DOI URL |
[40] |
TOKUBOME Y, NAKANISHI K, HANADA T. Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. Journal of the Ceramic Society of Japan, 2009,117(1363):351-355.
DOI URL |
[41] |
YANG J, WANG Q, WANG T, et al. Rapid preparation process, structure and thermal stability of lanthanum doped alumina aerogels with a high specific surface area. RSC Advances, 2016,6:26271-26279.
DOI URL |
[42] |
SUN X, WU Y, WANG Y, et al. Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel. Journal of Porous Materials, 2018,26:327-333.
DOI URL |
[43] | AL-YASSIR N, MAO R L V. Thermal stability of alumina aerogel doped with yttrium oxide, use as a catalyst support for the thermocatalytic cracking (TCC) process: an investigation of its textural and structural properties. Applied Catalysis, 2007,317:275-283. |
[44] | 周洁洁, 陈晓红, 宋怀河, 等. 氧化钇掺杂对Al2O3块状气凝胶结构与性能的影响. 硅酸盐通报, 2010,29(5):1002-1006. |
[45] | 孙雪峰, 吴玉胜, 李来时, 等. 锶掺杂对氧化铝气凝胶高温热稳定性的影响. 功能材料, 2018,8(9):09078-09081, 09086. |
[46] |
SHI Z, GAO H, WANG X, et al. One-step synthesis of monolithic micro-nano yttria stabilized ZrO2-Al2O3 composite aerogel. Microporous and Mesoporous Materials, 2018,259:26-32.
DOI URL |
[47] |
ZU G, SHEN J, WANG W, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalyst. Chemistry of Materials, 2014,26:5761-5772.
DOI URL |
[48] |
MIZUSHIMA Y, HORI M. Preparation and properties of alumina-organic compound aerogels. Journal of Non-Crystalline Solids, 1994,170:215-222.
DOI URL |
[49] |
YAKOVLEVA I V, VOLODINA A M, ZAIKOVSKIIA V I, et al. Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceramics International, 2018,44:4801-4806.
DOI URL |
[50] |
MIZUSHIMA Y, HORI M. Preparation of an alumina aerogel with SiC whisker inclusion. Journal of the European Ceramic Society, 1994,14:117-121.
DOI URL |
[51] | 隋超. 纤维素掺杂 SiO2与 Al2O3柔性气凝胶的制备及性能表征. 哈尔滨: 哈尔滨工业大学博士学位论文, 2015. |
[52] | 曹凤朝. 高强度氧化铝气凝胶复合材料的制备研究. 南京: 东南大学硕士学位论文, 2015. |
[53] | 孙晶晶, 胡子君, 吴文军, 等. 氧化铝气凝胶复合高温隔热瓦的制备及性能. 宇航材料工艺, 2017(3):33-36, 41. |
[54] |
ZOU W, WANG X, WU Y, et al. Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation. Ceramics International, 2019,45(1):644-650.
DOI URL |
[55] | YU Y, PENG K, FANG J, et al. Mechanical and thermal conductive properties of fiber-reinforced silica-alumina aerogels. Applied Ceramic Technology, 2018,15(5):1138-1145. |
[56] | 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料的研究. 长沙: 国防科技大学博士学位论文, 2009. |
[57] | 武纬. Al2O3-SiO2气凝胶及其隔热复合材料的制备与性能研究. 长沙: 国防科技大学硕士学位论文, 2008. |
[58] | ZHU Z, WANG F, YAO J, et al. High-temperature insulation property of opacifier-doped Al2O3-SiO2 aerogel/mullite fiber composites. Journal of Inorganic Materials, 2018,33(9):970-975. |
[59] |
TANG G H, BI C, ZHAO Y, et al. Thermal transport in nano-porous insulation of aerogel: factors, models and outlook. Energy, 2015,90:701-721.
DOI URL |
[60] |
LEE S C, CUNNINGTON G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. Journal of Thermophysics and Heat Transfer, 2000,14(2):121-136.
DOI URL |
[61] |
ZHAO J, DUAN Y, WANG X, et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. International Journal of Heat and Mass Transfer, 2012,55:5196-5204.
DOI URL |
[62] |
ZHANG H, FANG W, LI Z, et al. The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials. International Communications in Heat and Mass Transfer, 2015,68:158-161.
DOI URL |
[63] | 高庆福, 张长瑞, 冯坚, 等. 氧化铝气凝胶复合材料的制备与隔热性能. 国防科技大学学报, 2008,30(4):39-42. |
[64] |
YANG G, JIANG Y, FENG J, et al. Synthesis of fibre reinforced Al2O3-SiO2 aerogel composite with high density uniformity via a facile high-pressure impregnation approach. Processing and Application of Ceramics, 2017,11(3):185-190.
DOI URL |
[65] | WANG K Y, LIU R X, ZHANG L, et al. Preparation and thermal stability of quartz fiber reinforced silicon doped aluminum aerogel composites. IOP Conf. Series: Materials Science and Engineering, 2019,678:012076. |
[66] |
ZHONG Y, ZHANG J, WU X, et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity. Journal of Sol-Gel Science and Technology, 2017,84:129-134.
DOI URL |
[67] |
LI H, CHEN Y, WANG P, et al. Porous carbon-bonded carbon fiber composites impregnated with SiO2-Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceramics International, 2018,44(3):3484-3487.
DOI URL |
[68] | 周洁洁, 王钦, 姚先周, 等. 纤维毡增强Al2O3-SiO2气凝胶复合材料的制备与隔热性能研究. 第一届中国国际复合材料科技大会论文集, 北京, 2013, 1090-1093. |
[69] |
XU L, JIANG Y, FENG J, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 2015,41(1):437-442.
DOI URL |
[70] |
GAO M, LIU B, ZHAO P, et al. Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator. Journal of Sol-Gel Science and Technology, 2019,91:514-522.
DOI URL |
[71] | 隗小庆, 倪星元, 沈军, 等. 氧化铝气凝胶隔热材料的制备和热学性能. 材料研究学报, 2012,26(3):261-266. |
[72] | 吴宇, 沈军, 祖国庆, 等. 耐高温Al2O3基气凝胶的制备和特性研究. 南京工业大学学报(自然科学版), 2016,38(2):15-19. |
[73] |
ZOU W, WANG X, WU Y, et al. Highly thermally stable alumina- based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide. Journal of Sol-Gel Science and Technology, 2017,84:507-514.
DOI URL |
[74] | 王虹, 周裴灿, 李荣年, 等. 氧化硅气凝胶与氧化铝气凝胶的性能对比. 中国建材科技, 2019(6):34-35. |
[75] | 冯坚. 气凝胶高效隔热材料. 北京: 科学出版社, 2016: 1-206. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[5] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[6] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[7] | HE Sizhe, WANG Junzhou, ZHANG Yong, FEI Jiawei, WU Aimin, CHEN Yifeng, LI Qiang, ZHOU Sheng, HUANG Hao. Fe/Submicron FeNi Soft Magnetic Composites with High Working Frequency and Low Loss [J]. Journal of Inorganic Materials, 2024, 39(8): 871-878. |
[8] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[9] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[10] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[11] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[12] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[13] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||