Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 561-566.DOI: 10.15541/jim20190246
Special Issue: 功能陶瓷论文精选(一):发光材料; 【虚拟专辑】LED发光材料
Previous Articles Next Articles
ZHENG Xue1,JIANG Rui1,LI Qian1,WANG Weizhe1,XU Zhimou1(),PENG Jing2
Received:
2019-05-24
Revised:
2019-09-08
Published:
2020-05-20
Online:
2019-12-29
Supported by:
CLC Number:
ZHENG Xue, JIANG Rui, LI Qian, WANG Weizhe, XU Zhimou, PENG Jing. Research on Anodic Aluminum Oxide Nanostructured LEDs[J]. Journal of Inorganic Materials, 2020, 35(5): 561-566.
Materials | Gas flow/sccm | Pressure/Pa | Power/W | Time/s | |
---|---|---|---|---|---|
Al2O3 | BCl3 | 40 | 1.0664 | 400 | 240 |
Ar | 10 | ||||
GaN | BCl3 | 20 | 0.5332 | 550 | 25 |
Cl2 | 30 |
Table 1 Parameters of the ICP etching
Materials | Gas flow/sccm | Pressure/Pa | Power/W | Time/s | |
---|---|---|---|---|---|
Al2O3 | BCl3 | 40 | 1.0664 | 400 | 240 |
Ar | 10 | ||||
GaN | BCl3 | 20 | 0.5332 | 550 | 25 |
Cl2 | 30 |
Fig. 2 SEM images of the AAO membrane which pore widening by increasing etching time and calculated scale distribution of the pore diameter in (a1-a4) (a1) 60 s; (a2) 120 s; (a3) 180 s; (a4) 240 s. (b1-b4) correspond to (a1-a4)
t/s | D/nm | V/(nm·s-1) |
---|---|---|
0 | 251.37 | 0.141 |
30 | 259.85 | 0.159 |
60 | 270.48 | 0.199 |
90 | 283.70 | 0.255 |
120 | 301.12 | 0.313 |
150 | 321.28 | 0.368 |
180 | 345.29 | 0.426 |
210 | 372.45 | 0.476 |
240 | 402.45 | 0.500 |
270 | 432.53 | 0.501 |
Table 2 Statistics of pore diameter and etching rate with ICP etching for different durations
t/s | D/nm | V/(nm·s-1) |
---|---|---|
0 | 251.37 | 0.141 |
30 | 259.85 | 0.159 |
60 | 270.48 | 0.199 |
90 | 283.70 | 0.255 |
120 | 301.12 | 0.313 |
150 | 321.28 | 0.368 |
180 | 345.29 | 0.426 |
210 | 372.45 | 0.476 |
240 | 402.45 | 0.500 |
270 | 432.53 | 0.501 |
[1] | CHO J, PARK J H, KIM J K , et al. White light-emitting diodes: history, progress, and future. Laser & Photonics Reviews, 2017,11(2):1600147. |
[2] | LI Y, WANG W, HUANG L , et al. High-performance vertical GaN-based near-ultraviolet light-emitting diodes on Si substrates. Journal of Materials Chemistry C, 2018,6(42):11255-11260. |
[3] | LUO X, HU R, LIU S , et al. Heat and fluid flow in high-power LED packaging and applications. Progress in Energy and Combustion Science, 2016,56:1-32. |
[4] | FERREIRA R X G, XIE E, MCKENDRY J J D , et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technology Letters, 2016,28(19):2023-2026. |
[5] | CHO J, SCHUBERT E F, KIM J K . Efficiency droop in light- emitting diodes: challenges and countermeasures. Laser & Photonics Reviews, 2013,7(3):408-421. |
[6] | WIERER JR J J, TSAO J Y, SIZOV D S . Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews, 2013,7(6):963-993. |
[7] | NAKAMURA S, KRAMES M R . History of gallium-nitride-based light-emitting diodes for illumination. Proceedings of the IEEE, 2013,101(10):2211-2220. |
[8] | LAI C F, KUO H C, CHAO C H , et al. Structural effects on highly directional far-field emission patterns of GaN-based micro-cavity light-emitting diodes with photonic crystals. Journal of Lightwave Technology, 2010,28(19):2881-2889. |
[9] | WANG S C, CHENG Y W, YIN Y F , et al. Interactions of diffraction modes contributed from surface photonic crystals and nanoholes in a GaN-based light-emitting diode. Journal of Lightwave Technology, 2011,29(24):3772-3776. |
[10] | WIESMANN C, BERGENEK K, LINDER N , et al. Photonic crystal LEDs-designing light extraction. Laser & Photonics Reviews, 2009,3(3):262-286. |
[11] | WEI T, HUO Z, ZHANG Y , et al. Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO2 photonic crystals. Optics Express, 2014,22(104):A1093-A1100. |
[12] | LIN C F, YANG Z J, ZHENG J H , et al. Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall. IEEE Photonics Technology Letters, 2005,17(10):2038-2040. |
[13] |
LEE T X, GAO K F, CHIEN W T , et al. Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Optics Express, 2007,15(11):6670-6676.
DOI URL PMID |
[14] |
SONG J O, LEEM D S, KWAK J S , et al. Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts. IEEE Photonics Technology Letters, 2005,17(2):291-293.
DOI URL |
[15] |
PARK H, BYEON K J, YANG K Y , et al. The fabrication of a patterned ZnO nanorod array for high brightness LEDs. Nanotechnology, 2010,21(35):355304.
DOI URL PMID |
[16] |
AN S J, CHAE J H, YI G C , et al. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Applied Physics Letters, 2008,92(12):121108.
DOI URL PMID |
[17] |
SCHEERLINCK S, DUBRUEL P, BIENSTMAN P , et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. Journal of Lightwave Technology, 2009,27(10):1415-1420.
DOI URL |
[18] |
SUN T Y, ZHAO W N, WU X H , et al. Porous light-emitting diodes with patterned sapphire substrates realized by high-voltage self-growth and soft UV nanoimprint processes. Journal of Lightwave Technology, 2014,32(2):326-332.
DOI URL |
[19] |
ZANG K Y, CHUA S J, TENG J H , et al. Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes. Applied Physics Letters, 2008,92(24):243126.
DOI URL |
[20] |
RYU S W, PARK J, OH J K , et al. Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminum oxide. Advanced Functional Materials, 2009,19(10):1650-1655.
DOI URL |
[21] |
LEE J, KIM D H, KIM J , et al. GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns. Current Applied Physics, 2009,9(3):633-635.
DOI URL |
[22] |
DAI T, ZHANG B, KANG X N , et al. Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template. IEEE Photonics Technology Letters, 2008,20(23):1974-1976.
DOI URL |
[23] |
ZHOU W, MIN G, SONG Z , et al. Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography. Nanotechnology, 2010,21(20):205304.
DOI URL PMID |
[24] |
FU X X, ZHANG B, KANG X N , et al. GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template. Optics Express, 2011,19(105):A1104-A1108.
DOI URL PMID |
[25] |
LI Y, ZHENG M, MA L , et al. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006,17(20):5101.
DOI URL |
[26] |
CUI L, WANG G G, ZHANG H Y , et al. Progress in preparation of patterned sapphire substrate for GaN-based light emitting diodes. Journal of Inorganic Materials, 2012,27(9):897-905.
DOI URL |
[27] |
LI G, WANG W, YANG W , et al. GaN-based light-emitting diodes on various substrates: a critical review. Reports on Progress in Physics, 2016,79(5):056501.
DOI URL PMID |
[28] |
LEE W, KIM J C, GOSELE U . Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Advanced Functional Materials, 2010,20(1):21-27.
DOI URL |
[29] | KOKKORIS G, BOUDOUVIS A G, GOGOLIDES E . Integrated framework for the flux calculation of neutral species inside trenches and holes during plasma etching. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006,24(6):2008-2020. |
[30] | BORODITSKY M, YABLONOVITCH E . Light-emitting Diode Extraction Efficiency. Light-Emitting Diodes: Research, Manufacturing, and Applications, San Jose, 1997: 119-123. |
[1] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[2] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[3] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[4] | LU Hao, XU Shengrui, HUANG Yong, CHEN Xing, XU Shuang, LIU Xu, WANG Xinhao, GAO Yuan, ZHANG Yachao, DUAN Xiaoling, ZHANG Jincheng, HAO Yue. Epitaxy Single Crystal GaN on AlN Prepared by Plasma-enhanced Atomic Layer Deposition [J]. Journal of Inorganic Materials, 2024, 39(5): 547-553. |
[5] | YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots [J]. Journal of Inorganic Materials, 2024, 39(4): 449-456. |
[6] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[7] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[8] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[9] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[10] | MENG Bo, XIAO Gang, WANG Xiuli, TU Jiangping, GU Changdong. Ionic Thermal Synthesis and Reversible Heat Storage Performance of Manganese-based Oxides [J]. Journal of Inorganic Materials, 2023, 38(7): 793-799. |
[11] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[12] | SHI Yanlei, SUN Niefeng, XU Chengyan, WANG Shujie, LIN Peng, MA Chunlei, XU Senfeng, WANG Wei, CHEN Chunmei, FU Lijie, SHAO Huimin, LI Xiaolan, WANG Yang, QIN Jingkai. Thermal Field of 6-inch Indium Phosphide Single Crystal Growth by Semi-sealed Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 335-342. |
[13] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[14] | LU Chenhui, GE Wanyin, SONG Panpan, ZHANG Panfeng, XU Meimei, ZHANG Wei. Luminescence Property of Eu Doped SiAlON Phosphors for White LEDs [J]. Journal of Inorganic Materials, 2023, 38(1): 97-104. |
[15] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||