 
 Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 561-566.DOI: 10.15541/jim20190246
Special Issue: 功能陶瓷论文精选(一):发光材料
Previous Articles Next Articles
					
													ZHENG Xue1,JIANG Rui1,LI Qian1,WANG Weizhe1,XU Zhimou1( ),PENG Jing2
),PENG Jing2
												  
						
						
						
					
				
Received:2019-05-24
															
							
																	Revised:2019-09-08
															
							
															
							
																	Published:2020-05-20
															
							
																	Online:2019-12-29
															
						Supported by:CLC Number:
ZHENG Xue, JIANG Rui, LI Qian, WANG Weizhe, XU Zhimou, PENG Jing. Research on Anodic Aluminum Oxide Nanostructured LEDs[J]. Journal of Inorganic Materials, 2020, 35(5): 561-566.
| Materials | Gas flow/sccm | Pressure/Pa | Power/W | Time/s | |
|---|---|---|---|---|---|
| Al2O3 | BCl3 | 40 | 1.0664 | 400 | 240 | 
| Ar | 10 | ||||
| GaN | BCl3 | 20 | 0.5332 | 550 | 25 | 
| Cl2 | 30 | ||||
Table 1 Parameters of the ICP etching
| Materials | Gas flow/sccm | Pressure/Pa | Power/W | Time/s | |
|---|---|---|---|---|---|
| Al2O3 | BCl3 | 40 | 1.0664 | 400 | 240 | 
| Ar | 10 | ||||
| GaN | BCl3 | 20 | 0.5332 | 550 | 25 | 
| Cl2 | 30 | ||||
 
																													Fig. 2 SEM images of the AAO membrane which pore widening by increasing etching time and calculated scale distribution of the pore diameter in (a1-a4) (a1) 60 s; (a2) 120 s; (a3) 180 s; (a4) 240 s. (b1-b4) correspond to (a1-a4)
| t/s | D/nm | V/(nm·s-1) | 
|---|---|---|
| 0 | 251.37 | 0.141 | 
| 30 | 259.85 | 0.159 | 
| 60 | 270.48 | 0.199 | 
| 90 | 283.70 | 0.255 | 
| 120 | 301.12 | 0.313 | 
| 150 | 321.28 | 0.368 | 
| 180 | 345.29 | 0.426 | 
| 210 | 372.45 | 0.476 | 
| 240 | 402.45 | 0.500 | 
| 270 | 432.53 | 0.501 | 
Table 2 Statistics of pore diameter and etching rate with ICP etching for different durations
| t/s | D/nm | V/(nm·s-1) | 
|---|---|---|
| 0 | 251.37 | 0.141 | 
| 30 | 259.85 | 0.159 | 
| 60 | 270.48 | 0.199 | 
| 90 | 283.70 | 0.255 | 
| 120 | 301.12 | 0.313 | 
| 150 | 321.28 | 0.368 | 
| 180 | 345.29 | 0.426 | 
| 210 | 372.45 | 0.476 | 
| 240 | 402.45 | 0.500 | 
| 270 | 432.53 | 0.501 | 
| [1] | CHO J, PARK J H, KIM J K , et al. White light-emitting diodes: history, progress, and future. Laser & Photonics Reviews, 2017,11(2):1600147. | 
| [2] | LI Y, WANG W, HUANG L , et al. High-performance vertical GaN-based near-ultraviolet light-emitting diodes on Si substrates. Journal of Materials Chemistry C, 2018,6(42):11255-11260. | 
| [3] | LUO X, HU R, LIU S , et al. Heat and fluid flow in high-power LED packaging and applications. Progress in Energy and Combustion Science, 2016,56:1-32. | 
| [4] | FERREIRA R X G, XIE E, MCKENDRY J J D , et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technology Letters, 2016,28(19):2023-2026. | 
| [5] | CHO J, SCHUBERT E F, KIM J K . Efficiency droop in light- emitting diodes: challenges and countermeasures. Laser & Photonics Reviews, 2013,7(3):408-421. | 
| [6] | WIERER JR J J, TSAO J Y, SIZOV D S . Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews, 2013,7(6):963-993. | 
| [7] | NAKAMURA S, KRAMES M R . History of gallium-nitride-based light-emitting diodes for illumination. Proceedings of the IEEE, 2013,101(10):2211-2220. | 
| [8] | LAI C F, KUO H C, CHAO C H , et al. Structural effects on highly directional far-field emission patterns of GaN-based micro-cavity light-emitting diodes with photonic crystals. Journal of Lightwave Technology, 2010,28(19):2881-2889. | 
| [9] | WANG S C, CHENG Y W, YIN Y F , et al. Interactions of diffraction modes contributed from surface photonic crystals and nanoholes in a GaN-based light-emitting diode. Journal of Lightwave Technology, 2011,29(24):3772-3776. | 
| [10] | WIESMANN C, BERGENEK K, LINDER N , et al. Photonic crystal LEDs-designing light extraction. Laser & Photonics Reviews, 2009,3(3):262-286. | 
| [11] | WEI T, HUO Z, ZHANG Y , et al. Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO2 photonic crystals. Optics Express, 2014,22(104):A1093-A1100. | 
| [12] | LIN C F, YANG Z J, ZHENG J H , et al. Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall. IEEE Photonics Technology Letters, 2005,17(10):2038-2040. | 
| [13] | LEE T X, GAO K F, CHIEN W T , et al. Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Optics Express, 2007,15(11):6670-6676. DOI URL PMID | 
| [14] | SONG J O, LEEM D S, KWAK J S , et al. Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts. IEEE Photonics Technology Letters, 2005,17(2):291-293. DOI URL | 
| [15] | PARK H, BYEON K J, YANG K Y , et al. The fabrication of a patterned ZnO nanorod array for high brightness LEDs. Nanotechnology, 2010,21(35):355304. DOI URL PMID | 
| [16] | AN S J, CHAE J H, YI G C , et al. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Applied Physics Letters, 2008,92(12):121108. DOI URL PMID | 
| [17] | SCHEERLINCK S, DUBRUEL P, BIENSTMAN P , et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. Journal of Lightwave Technology, 2009,27(10):1415-1420. DOI URL | 
| [18] | SUN T Y, ZHAO W N, WU X H , et al. Porous light-emitting diodes with patterned sapphire substrates realized by high-voltage self-growth and soft UV nanoimprint processes. Journal of Lightwave Technology, 2014,32(2):326-332. DOI URL | 
| [19] | ZANG K Y, CHUA S J, TENG J H , et al. Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes. Applied Physics Letters, 2008,92(24):243126. DOI URL | 
| [20] | RYU S W, PARK J, OH J K , et al. Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminum oxide. Advanced Functional Materials, 2009,19(10):1650-1655. DOI URL | 
| [21] | LEE J, KIM D H, KIM J , et al. GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns. Current Applied Physics, 2009,9(3):633-635. DOI URL | 
| [22] | DAI T, ZHANG B, KANG X N , et al. Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template. IEEE Photonics Technology Letters, 2008,20(23):1974-1976. DOI URL | 
| [23] | ZHOU W, MIN G, SONG Z , et al. Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography. Nanotechnology, 2010,21(20):205304. DOI URL PMID | 
| [24] | FU X X, ZHANG B, KANG X N , et al. GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template. Optics Express, 2011,19(105):A1104-A1108. DOI URL PMID | 
| [25] | LI Y, ZHENG M, MA L , et al. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006,17(20):5101. DOI URL | 
| [26] | CUI L, WANG G G, ZHANG H Y , et al. Progress in preparation of patterned sapphire substrate for GaN-based light emitting diodes. Journal of Inorganic Materials, 2012,27(9):897-905. DOI URL | 
| [27] | LI G, WANG W, YANG W , et al. GaN-based light-emitting diodes on various substrates: a critical review. Reports on Progress in Physics, 2016,79(5):056501. DOI URL PMID | 
| [28] | LEE W, KIM J C, GOSELE U . Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Advanced Functional Materials, 2010,20(1):21-27. DOI URL | 
| [29] | KOKKORIS G, BOUDOUVIS A G, GOGOLIDES E . Integrated framework for the flux calculation of neutral species inside trenches and holes during plasma etching. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006,24(6):2008-2020. | 
| [30] | BORODITSKY M, YABLONOVITCH E . Light-emitting Diode Extraction Efficiency. Light-Emitting Diodes: Research, Manufacturing, and Applications, San Jose, 1997: 119-123. | 
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. | 
| [2] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. | 
| [3] | CHEN Xi, YUAN Yuan, TAN Yeqiang, LIU Changsheng. Strategic Study on the Development of Inorganic Non-metallic Biomaterials [J]. Journal of Inorganic Materials, 2025, 40(5): 449-456. | 
| [4] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. | 
| [5] | AN Xia, XU Shengrui, TAO Hongchang, SU Huake, YANG He, XU Kang, XIE Lei, JIA Jingyu, ZHANG Jincheng, HAO Yue. High Quality GaN Epitaxy Induced Nucleation by Ar Ion Implantation into Sapphire Substrate [J]. Journal of Inorganic Materials, 2025, 40(1): 91-96. | 
| [6] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. | 
| [7] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. | 
| [8] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. | 
| [9] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. | 
| [10] | LU Hao, XU Shengrui, HUANG Yong, CHEN Xing, XU Shuang, LIU Xu, WANG Xinhao, GAO Yuan, ZHANG Yachao, DUAN Xiaoling, ZHANG Jincheng, HAO Yue. Epitaxy Single Crystal GaN on AlN Prepared by Plasma-enhanced Atomic Layer Deposition [J]. Journal of Inorganic Materials, 2024, 39(5): 547-553. | 
| [11] | YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots [J]. Journal of Inorganic Materials, 2024, 39(4): 449-456. | 
| [12] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. | 
| [13] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. | 
| [14] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. | 
| [15] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||