Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (2): 158-164.DOI: 10.15541/jim20190105
Special Issue: 生物材料论文精选(2020); 【虚拟专辑】抗菌材料(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
LI Kun-Qiang1,2,QIAO Yu-Qin1,LIU Xuan-Yong1,2()
Received:
2019-03-09
Revised:
2019-04-03
Published:
2020-02-20
Online:
2019-05-29
Supported by:
CLC Number:
LI Kun-Qiang,QIAO Yu-Qin,LIU Xuan-Yong. Titanium Modified by Copper Ion Implantation: Anti-bacterial and Cellular Behaviors[J]. Journal of Inorganic Materials, 2020, 35(2): 158-164.
Parameters | Target | Cathodic arc |
---|---|---|
Pulsing frequency /Hz | 10 | 10 |
Voltage pulse duration /μs | 500 | 500 |
Implantation Voltage /kV | -30 | - |
Pressure /Pa | 5×10-3 | - |
Table 1 Instrumental parameters of Cu-PⅢ
Parameters | Target | Cathodic arc |
---|---|---|
Pulsing frequency /Hz | 10 | 10 |
Voltage pulse duration /μs | 500 | 500 |
Implantation Voltage /kV | -30 | - |
Pressure /Pa | 5×10-3 | - |
Sample | Cu-1h | Cu-2h | Cu-3h |
---|---|---|---|
Cu content/at% | 2.54 | 5.12 | 5.99 |
Table 2 Cu contents at the surfaces of various samples explored with XPS
Sample | Cu-1h | Cu-2h | Cu-3h |
---|---|---|---|
Cu content/at% | 2.54 | 5.12 | 5.99 |
Fig. 3 Water contact angles of samples’ surfaces (a), Tafel curves of samples in 0.9wt% NaCl solution (b), and Cu ions release of samples after immersion in PBS for 1, 4, 7 and 14 d (c)
Fig. 4 SEM morphologies of E. coli (a,c,e) and S. aureus (b,d,f) cultured on various samples(a,b), bacterial colonies on agar culture plates(c,d) and fluorescence intensities of Alamar blue for bacterias cultured on various samples (e,f)
Fig. 5 Fluorescence intensities of alamar Blue for rBMSCs (a) and HUVECs (b) cultured on different sample surfaces for 1, 4, and 7 d *p < 0.05, **p < 0.01, ***p < 0.001
[1] | LEPICKA M, GRADZKA-DAHLKE M . Surface modification of Ti6Al4V titanium alloy for biomedical applications and its effect on tribological performance-a review. Reviews on Advanced Materials Science, 2016,46(1):86-103. |
[2] | LIU X, CHU P, DING C . Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004,47(3/4):49-121. |
[3] | YUAN K, CHEN K C, CHAN Y J , et al. Dental implant failure associated with bacterial infection and long-term bisphosphonate usage: a case report. Implant Dent, 2012,21(1):3-7. |
[4] | ZHU H, JIN G, CAO H , et al. Influence of implantation voltage on the biological properties of zinc-implanted titanium. Surface & Coatings Technology, 2017,312:75-80. |
[5] | YU Y, JIN G, XUE Y , et al. Multifunctions of dual Zn/Mg ion co- implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomaterialia, 2017,49:590-603. |
[6] | LI J, LIU X, QIAO Y , et al. Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface. Colloids and Surfaces B-Biointerfaces, 2014,113:134-145. |
[7] | JIN G, QIN H, CAO H , et al. Zn/Ag micro-galvanic couples formed on titanium and osseointegration effects in the presence of S-aureus. Biomaterials, 2015,65:22-31. |
[8] | YU L, TIAN Y, QIAO Y , et al. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids and Surfaces B-Biointerfaces, 2017,152:376-384. |
[9] | HU H, TANG Y, PANG L , et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/ poly(lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl. Mater. Interfaces, 2018,10(27):22939-22950. |
[10] | BARI A, BLOISE N, FIORILLI S , et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomaterialia, 2017,55:493-504. |
[11] | TIAN T, WU CT, CHANG J . Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi4O10, cup) bioceramics. RSC Advances, 2016,6(51):45840-45849. |
[12] | WENG L, BODA S K, TEUSINK M J , et al. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Applied Materials & Interfaces, 2017,9(29):24484-24496. |
[13] | LIU R, MEMARZADEH K, CHANG B , et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against streptococcus mutans and porphyromonas gingivalis. Scientific Reports, 2016,6:29985. |
[14] | HEMPEL F, FINKE B, ZIETZ C , et al. Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surface & Coatings Technology, 2014,256:52-58. |
[15] | LIU R, TANG Y, ZENG L , et al. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent. Mater., 2018,34(8):1112-1126. |
[16] | WALSCHUS U, HOENE A, PATRZYK M , et al. A cell-adhesive plasma polymerized allylamine coating reduces the in vivo inflammatory response induced by Ti6Al4V modified with plasma immersion ion implantation of copper. Journal of Functional BioMaterials, 2017,8(3):30. |
[17] | SHARIFAHMADIAN O, SALIMIJAZI H R, FATHI M H , et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surface & Coatings Technology, 2013,233:74-79. |
[18] | LIU C, FU X, PAN H , et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci. Rep., 2016,6:27374. |
[19] | WANG X, CHENG F, LIU J , et al. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater., 2016,46:286-298. |
[20] | LU T, QIAO Y, LIU X . Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus, 2012,2(3):325-336. |
[21] | TIAN Y, CAO H, QIAO Y , et al. Antimicrobial and osteogenic properties of iron-doped titanium. RSC Advances, 2016,6(52):46495-46507. |
[22] | QIU J, LIU L, CHEN B , et al. Graphene oxide as a dual Zn/Mg ion carrier and release platform: enhanced osteogenic activity and antibacterial properties. Journal of Materials Chemistry B, 2018,6(13):2004-2012. |
[23] | DING Z, QIAO Y, PENG F , et al. Si-doped porous TiO2 coatings enhanced in vitro angiogenic behavior of human umbilical vein endothelial cells. Colloids and Surfaces B-Biointerfaces, 2017,159:493-500. |
[24] | WANG H, LU T, MENG F , et al. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation. Colloids and Surfaces B-Biointerfaces, 2014,117:89-97. |
[25] | ANANTH A, DHARANEEDHARAN S, HEO M S , et al. Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chemical Engineering Journal, 2015,262:179-188. |
[26] | JOLLEY J G, GEESEY G G, HANKINS M R , et al. Auger-electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Applied Surface Science, 1989,37(4):469-480. |
[27] | PARMIGIANI F, PACCHIONI G, ILLAS F , et al. Studies of the Cu-O bond in cupric oxide by X-ray photoelectron-spectroscopy and ab initio electronic-structure models. Journal of Electron Spectroscopy and Related Phenomena, 1992,59(3):255-269. |
[28] | MILLER A C, W S G . Copper by XPS. Surface Science Spectra, 1993,2(1):55-60. |
[29] | NISHIMOTO S, BHUSHAN B . Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013,3(3):671-690. |
[30] | LIU S, ZHANG XX . Small colony variants are more susceptible to copper-mediated contact killing for pseudomonas aeruginosa and staphylococcus aureus. Journal of Medical Microbiology, 2016,65:1143-1151. |
[31] | PARMAR J H, QUINTANA J, RAMIREZ D , et al. An important role for periplasmic storage in pseudomonas aeruginosa copper homeostasis revealed by a combined experimental and computational modeling study. Molecular Microbiology, 2018,110(3):357-369. |
[32] | HONG R, KANG T Y, MICHELS C A , et al. Membrane lipid peroxidation in copper alloy-mediated contact killing of escherichia coli. Applied and Environmental Microbiology, 2012,78(6):1776-1784. |
[33] | XIA C, CAI DS, TAN J , et al. Synergistic effects of N/Cu dual ions implantation on stimulating antibacterial ability and angiogenic activity of titanium. ACS Biomaterials Science & Engineering, 2018,4(9):3185-3193. |
[34] | TAN J, WANG D H, CAO H L , et al. Effect of local alkaline microenvironment on the behaviors of bacteria and osteogenic cells. ACS Applied Materials & Interfaces, 2018,10(49):42018-42029. |
[35] | GUO C R, LI L, LI S S , et al. Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material for bone tissue engineering. RSC Advances, 2017,7(67):42614-42626. |
[1] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[2] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[3] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[4] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[5] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[6] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[7] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[8] | DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448. |
[9] | WU Xuetong, ZHANG Ruofei, YAN Xiyun, FAN Kelong. Nanozyme: a New Approach for Anti-microbial Infections [J]. Journal of Inorganic Materials, 2023, 38(1): 43-54. |
[10] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[11] | WU Ling, TAN Ji, QIAN Shi, GE Naijian, LIU Xuanyong. Biological Property Investigation of Nitinol Surface Implanted with Tantalum [J]. Journal of Inorganic Materials, 2022, 37(11): 1217-1224. |
[12] | WU Aijun, ZHU Min, ZHU Yufang. Copper-incorporated Calcium Silicate Nanorods Composite Hydrogels for Tumor Therapy and Skin Wound Healing [J]. Journal of Inorganic Materials, 2022, 37(11): 1203-1216. |
[13] | ZHANG Weiwei, LU Chen, YING Guobing, ZHANG Jianfeng, JIANG Wan. Effect and Mechanism of the Surface Treatment and Gradation Filling of AlN on the Performance of Insulation Layer of Copper Clad Laminate [J]. Journal of Inorganic Materials, 2021, 36(8): 847-855. |
[14] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
[15] | FU Jiajun, SHEN Tao, WU Jia, WANG Chen. Nanozyme: a New Strategy Combating Bacterial [J]. Journal of Inorganic Materials, 2021, 36(3): 257-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||