Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (6): 660-666.DOI: 10.15541/jim20180395
Previous Articles Next Articles
Shu-Guang ZHOU1,2,Yi-Jun GUO2(),Xiao LIU2
Received:
2018-08-28
Revised:
2018-11-23
Published:
2019-06-20
Online:
2019-05-23
Supported by:
CLC Number:
Shu-Guang ZHOU, Yi-Jun GUO, Xiao LIU. Simulation of ZrB2 Oxidation Behavior at Constant Temperature Ambient[J]. Journal of Inorganic Materials, 2019, 34(6): 660-666.
Fig. 1 Schematic sketch of the oxidation products of ZrB2 and morphology assumed in the model L: scale thickness; Rs: recession of substrate; hext: outside layer thickness of B2O3; hint: inside layer thickness of B2O3; a: interface between ambient and oxide; zb: interface between liquid and inside solid; s: interface between oxides and substrate; i: interface between inside liquid and solid
T/K | 1098 | 1163 | 1263 | 1365 | 1478 | 1573 | 1673 |
---|---|---|---|---|---|---|---|
Ratio | 1.05 | 1.04 | 1.03 | 0.99 | 0.96 | 0.87 | 0.70 |
Table 1 Ratio of thickness of B2O3 to that of ZrO2 at different temperatures
T/K | 1098 | 1163 | 1263 | 1365 | 1478 | 1573 | 1673 |
---|---|---|---|---|---|---|---|
Ratio | 1.05 | 1.04 | 1.03 | 0.99 | 0.96 | 0.87 | 0.70 |
[1] | CLOUGHERTY E V, KALISH D, PETER E T . esearch and development of refractory oxidation resistant diborides. RAFML-TR-68-190, 1968. |
[2] |
ZHANG GUO-JUN, LIU HAI-TAO, ZOU JI , et al. Chemical reactions in the life cycle of ZrB2 ceramics. Chinese Science Bulletin, 2015,60(3):276-286.
DOI URL |
[3] | LI GANG, HAN WEN-BO, JIANG JIU-XING . Mechanicalproperties and thermal shock resistance of ZrB2-SiC-AN ultrahigh temperature ceramics. Journal of Synthetic Crystals, 2009, 38, Special Edition: 36-39. |
[4] | SONG JIAN-RONG, LI JUN-GUO, SHEN QIANG , et al. Thermal shock and oxidation resistances of ZrB2-ZrO2 ceramics. Journal of the Chinese Ceramic Society, 2008,36(5):663-667. |
[5] | SONG JIE-GUANG, DU DA-MING, XU MING-HAN , et al. Oxidation behavior of ZrB2-matrix composite materials at high-temperature conditions. Powder Metallurgy Technology, 2015,33(5):336-340, 364. |
[6] |
ZHOU HAI-JUN, ZHANG XIANG-YU, GAO LE , et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings. Journal of Inorganic Materials, 2013,28(3):256-260.
DOI URL |
[7] | ZHAO HAI-LEI, WANG JIAN, LI WEN-CHAO . Study on oxidation kinetics of ZrB2-corundum-mullite composite. Naihuo Cailiao, 1998,32(6):322-325. |
[8] |
PARTHASARATHY T A, RAPP R A, OPEKA M , et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Materialia, 2007,55(17):5999-6010.
DOI URL |
[9] |
PARTHASARATHY T A, RAPP R A, OPEKA M , et al. A model for transitions in oxidation regimes of ZrB2. Materials Science Forum, 2008. 595-598:823-832.
DOI URL |
[10] |
PARTHASARATHY T A, RAPP R A, OPEKA M , et al. Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. Journal of the American Ceramic Society, 2009,92(5):1079-1086.
DOI URL |
[11] |
BERKOWITZ-MATTUCK J B . High-temperature oxidation III. zirconium and hafnium diborides. Journal of the Electrochemical Society, 1966,113(9):908-914.
DOI URL |
[12] | HU PING, WANG GUO-LIN, WANG ZHI . Oxidation mechanism and resistance of ZrB2-SiC composites. Corrosion Science, 2009,51(11):2747-2732. |
[13] | ANDREEVA A F . Zirconium diboride low resistance layers. MAM’97-Materials for Advanced Metallization, Poster Session I, 1997. |
[14] | PAGE R J, SHORT R A, HALBACH C R . Evaluation of zirconia, thoria and zirconium diboride for advanced resistojet use. NASA CR-112075, 1972. |
[15] | MCCLAINE L A . Thermodynamic and kinetic studies for a refractory materials program, Part III. ASD-TDR-62-204Part III, 1964. |
[16] |
LUTHRA K L . Oxidation of carbon/carbon composites—a theoretical analysis. Carbon, 1988,26(2):217-224.
DOI URL |
[17] | . CHASE JR M W. , NIST-JANAF Thermochemical Tables 4 th Ed. Physical and Chemical Reference Data Monograph No.9, 1998: 286-291, 1756, 1780. |
[18] |
TRIPP W C, GRAHAM H C . Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 ℃. Journal of the Electrochemical Society, 1971,118(7):1195-1199.
DOI URL |
[19] | PERRY R H, GREEN D W, MALONEY J O . Perry’s Chemical Engineers’ Handbook 7 th Ed. New York:McGraw-Hill, 1997: 570. |
[20] | BARIN I . Thermochemical data of pure substances. New York: VCH Verlags-gesellschaft, 1995: 122-124. |
[21] |
JACOBSON N S, CURRY D M . Oxidation microstructure studies of reinforced carbon/carbon. Carbon, 2006,44(7):1142-1150.
DOI URL |
[22] | WELTY J R, RORRER G L, FOSTER D G . Fundamentals of momentum, heat and mass transfer 6th Ed. New York: WILEY, 2013,P448. |
[23] | BIRD R B, STEWART W E, LIGHTFOOT E N . Transport phenomena. New York: John Wiley, 2002: 526, 866. |
[24] | J. SZEKELY J, EVANS J, SOHN W H Y . Gas Solid Reactions. New York: Academic Press, 1976: 25. |
[25] | DUFFA G. Ablative thermal protection system modeling . Reston: AIAA, Inc. Press, 2012: 109. |
[26] | LI JIAN-FENG, ZHOU XIA-MING, DING CHUAN-XIAN . Statistical analysis of porosity variations in plasma sprayed Cr3C2- NiCr coatings. Journal of Aeronautical Materials, 2000,20(1):33-38. |
[27] | ZHANG HONG-SONG, WANG FU-CHI, MA ZHUANG , et al. Quantitative analysis of pores in plasma-sprayed ZrO2 coatings. Journal of Materials Engineering, 2006, Supplement 1: 407-425. |
[28] |
PRATTEN N A . The precise measurement of the density in small samples. Materials Science, 1981,16(7):1737-1747.
DOI URL |
[29] | ZHAO YANG, LIN LI, MA ZHI-YUAN , et al. Establishing TBC random pore model based on random media theory. China Surface Engineering, 2010,23(2):78-81. |
[30] |
FOX A C, CLYNE T W . Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coating. Surface and Coatings Technology, 2004,184(2/3):311-321.
DOI URL |
[1] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[2] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[3] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[6] | SHEN Bin, ZHANG Xu, XIONG Huai, LI Haiyuan, XIE Xinglong. Preparation and Optical Properties of Sol-Gel SiO2 Antireflective Films [J]. Journal of Inorganic Materials, 2024, 39(5): 525-530. |
[7] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[8] | YANG Zhiliang, YANG Ao, LIU Peng, CHEN Liangxian, AN Kang, WEI Junjun, LIU Jinlong, WU Lishu, LI Chengming. Preparation of 3-inch Diamond Film on Silicon Substrate for Thermal Management [J]. Journal of Inorganic Materials, 2024, 39(3): 283-290. |
[9] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[10] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[11] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[12] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[13] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[14] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[15] | MU Honghe, WANG Pengfei, SHI Yufeng, ZHANG Zhonghan, WU Anhua, SU Liangbi. Large-size CeF3 Crystal Growth by Heat Exchanger-Bridgman Method: Thermal Field Design and Optimization [J]. Journal of Inorganic Materials, 2023, 38(3): 288-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||