Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 373-378.DOI: 10.15541/jim20180236
Previous Articles Next Articles
Ya-Dong LI1,Wei-Ping LI1,Qin WANG1,Dao-Guang ZHENG1,Jian-Xin WANG2()
Received:
2018-05-21
Revised:
2018-09-06
Published:
2019-04-20
Online:
2019-04-15
Supported by:
CLC Number:
Ya-Dong LI, Wei-Ping LI, Qin WANG, Dao-Guang ZHENG, Jian-Xin WANG. Flexible Carbon-fiber Supported Carbon-sulfur Electrode: Preparation, Physical Property and Electrochemical Performance[J]. Journal of Inorganic Materials, 2019, 34(4): 373-378.
Sample | Surface area/(m2?g-1) | Volume/(cm3?g-1) | Average pore diameter/nm | ||||
---|---|---|---|---|---|---|---|
SBET | Smicro | Sexternal | Vtotal | Vmicro | BJH | ||
Porous carbon | 1734.7242 | 1041.1364 | 693.5878 | 0.848649 | 0.472287 | 2.2930 | |
CSv | 7.4587 | 1.3661 | 6.0926 | 0.008040 | 0.000438 | 7.1043 |
Table 1 Texture properties of porous carbon
Sample | Surface area/(m2?g-1) | Volume/(cm3?g-1) | Average pore diameter/nm | ||||
---|---|---|---|---|---|---|---|
SBET | Smicro | Sexternal | Vtotal | Vmicro | BJH | ||
Porous carbon | 1734.7242 | 1041.1364 | 693.5878 | 0.848649 | 0.472287 | 2.2930 | |
CSv | 7.4587 | 1.3661 | 6.0926 | 0.008040 | 0.000438 | 7.1043 |
Fig. 4 SEM images of (a-c) CFF, (d) porous carbon, (e) CS, and (f-g) CSv, and EDX elemental maps of (h) carbon, (i) sulfur, and (j) the corresponding mass percentage in the area marked with a rectangle in (g)
Fig. 8 Cycle performance of CFF/CSv and Al/CSv batteries at (a) 0.2C-5C rates and (b) 2C rate, (c) Cycle performance of CFF/CSv batteries with different S load at 0.2C rate, and (d) charge-discharge performance of the CFF/CSv batteries with different S load at 0.05C rate
[1] | YANG Y, ZHENG G Y, CUI Y . Nanostructured sulfur cathodes. Chemical Society Reviews, 2013,42(7):3018-3032. |
[2] | ROSENMAN A, MARKEVICH E, SALITRA G , et al. Review on Li-sulfur battery systems: an integral perspective. Advanced Energy Materials, 2015, 5(11): 1500212-1-21. |
[3] | ZHANG R, CHENG X B, ZHAO C Z , et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Material, 2016,28(11):2155-2162. |
[4] | CHENG X B, ZHANG R, ZHAO C Z , et al. A review of solid electrolyte interphases on lithium metal anode. Advanced Material, 2016, 3(3): 1500213-1-20. |
[5] | MARMORSTEIN D, YU T H, STRIEBEL K A , et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. Journal of Power Sources, 2000,89(2):219-226. |
[6] | LI W Y, ZHENG G Y, CUI Y , et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium- sulphur batteries. Nature Communications, 2013, 4(4): 1331-1-6. |
[7] | CHEN H W, DONG W L, WANG C , et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Scientific Reports, 2013, 3(5): 1910-1-6. |
[8] | WU F, CHENG J Z, CHENG R J , et al. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium- sulfur batteries. ChemSusChem, 2013,6(8):1438-1444. |
[9] | DIRLAM P T, CHAR K, PYUN J , et al. The use of polymers in Li-S batteries: a review. Journal of Polymer Science A: Polymer Chemistry, 2017,55:1635-1668. |
[10] | PENG H J, HUANG J Q, WEU F , et al. Nanoarchitectured graphene/ CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Advanced Functional Materials, 2014,24(19):2772-2781. |
[11] | ZHANG Z, KONG L L, LIU S , et al. A high-efficiency sulfur/ carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Advanced Energy Materials, 2017, 7(11): 1602543-1-12. |
[12] | ZENG L C, YAO Y, YU Y , et al. A flexible S1-xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Materials, 2016,5:50-57. |
[13] | HANG S C, SONG M S, LEE J Y , et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. Journal of Electrochemical Society, 2003,150(7):A889-A893. |
[14] | CHANG Z, DING B, DOU H , et al. Hierarchically porous multilayered carbon barriers for high-performance Li-S batteries. Chemistry, 2018,24(15):3768-3775. |
[15] | LI G R, LEI W, CHEN Z W , et al. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Advanced Energy Materials, 2018, 8(8): 1702381-1-10. |
[16] | CHUNG S H, MANTHIRAM A . Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries. Electrochemistry Communications, 2014,38:91-95. |
[17] | HU M M, HU T, LI Z J , et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 2018,12(4):3578-3586. |
[18] | YANG W, SONG A L, SUN G , et al. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale, 2018,10(2):816-824. |
[19] | ZHAO Z X, QING D, WANG S , et al. Fabrication of high conductive S/C cathode by sulfur infiltration into hierarchical porous carbon/ carbon fiber weave-structured materials via vapor-melting method. Electrochimica Acta, 2014,127:123-131. |
[20] | LI X, WANG L J, XIA, LIU Z , et al. Catalytic oxidation of toluene over copper and manganese based catalysts: effect of water vapor. Catalysis Communications, 2011,14(1):15-19. |
[21] | CUI X L, SHAN Z Q, CUI L , et al. Enhanced electrochemical performance of sulfur/carbon nanocomposite material prepared via chemical deposition with a vacuum soaking step. Electrochimica Acta, 2013,105(26):23-30. |
[22] | SCHUSTER J, YIM T, NAZAR L F , et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium- sulfur batteries. Angewandte Chemie International Edition, 2012,51(15):3591-3595. |
[23] | NAZAR L F, JI X L, LEE K T . A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009,8(6):500-506. |
[24] | OSCHATZ M, THIEME S, BORCHARDT L , et al. A new route for the preparation of mesoporous carbon materials with high performance in lithium-sulphur battery cathodes. Chemical Communications, 2013,49(52):5832-5834. |
[25] | YI L L, WANG X Y, WANG G , et al. Improved electrochemical performance of spherical Li2FeSiO4/C cathode materials via Mn doping for lithium-ion batteries. Electrochimica Acta, 2016,222:1354-1364. |
[26] | LI G C, HU J J, LI G R , et al. Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. Journal of Power Sources, 2013,240(31):598-605. |
[27] | YAMIN H, GORENSHTEIN A, PENCINER J , et al. Lithium sulfur battery: oxidation/reduction mechanisms of polysulfides in THF solutions. Journal of Electrochemical Society, 1988,19(33):1045-1048. |
[28] | RAUH R D, ABRAHAM K M, PEARSON G F , et al. A lithium/ dissolved sulfur battery with an organic electrolyte. Journal of Electrochemical Society, 1979,126(4):523-527. |
[29] | KOLOSNITYN V S, KUZMINA E V, KARASEVA S E , et al. A study of the electrochemIcal processes in lithium-sulphur cells by impedance spectroscopy. Journal of Power Sources, 2011,196(3):1478-1482. |
[30] | XIE J, YANG J, ZHOU X , et al. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. Journal of Power Sources, 2014,253(5):55-63. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | ZHAO Yawen, QU Fajin, WANG Yanyi, WANG Zhiwen, CHEN Chusheng. Preparation and Properties of Aluminum Silicate Fiber Supported PtTFPP-PDMS Flexible Oxygen Sensing Components [J]. Journal of Inorganic Materials, 2024, 39(10): 1084-1090. |
[6] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[7] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[8] | LI Gaoran, LI Hongyang, ZENG Haibo. Recent Progress of Boron-based Materials in Lithium-sulfur Battery [J]. Journal of Inorganic Materials, 2022, 37(2): 152-162. |
[9] | LI Tingting, ZHANG Yang, CHEN Jiahang, MIN Yulin, WANG Jiulin. Flexible Binder for S@pPAN Cathode of Lithium Sulfur Battery [J]. Journal of Inorganic Materials, 2022, 37(2): 182-188. |
[10] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[11] | FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 140-151. |
[12] | XU Haifeng,HOU Chengyi,ZHANG Qinghong,LI Yaogang,WANG Hongzhi. Preparation and Thermoelectric Performance of Tellurium Nanowires-based Thin-Film Materials [J]. Journal of Inorganic Materials, 2020, 35(9): 1034-1040. |
[13] | JIANG Hao,WU Hao,HOU Chengyi,LI Yaogang,XIAO Ru,ZHANG Qinghong,WANG Hongzhi. Sawing Angles on Property of Lithium-sulfur Battery Interlayer Prepared with Birch Derived Orientedly Microchannel Biochar [J]. Journal of Inorganic Materials, 2020, 35(6): 717-723. |
[14] | YANG Yi-Na, WANG Ran-Ran, SUN Jing. MXenes in Flexible Force Sensitive Sensors: a Review [J]. Journal of Inorganic Materials, 2020, 35(1): 8-18. |
[15] | Peng LI, Xiao-Lei NIE, Ye TIAN, Wen-Bing FANG, Ping WEI, Wan-Ting ZHU, Zhi-Gang SUN, Qing-Jie ZHANG, Wen-Yu ZHAO. Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/epoxy Composite Thermoelectric Films [J]. Journal of Inorganic Materials, 2019, 34(6): 679-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||