Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (9): 1034-1040.DOI: 10.15541/jim20190550
Special Issue: 能源材料论文精选(三):热电与燃料电池(2020)
• RESEARCH PAPER • Previous Articles Next Articles
XU Haifeng(),HOU Chengyi(
),ZHANG Qinghong,LI Yaogang(
),WANG Hongzhi
Received:
2019-10-28
Revised:
2020-01-09
Published:
2020-09-20
Online:
2020-03-03
Supported by:
CLC Number:
XU Haifeng,HOU Chengyi,ZHANG Qinghong,LI Yaogang,WANG Hongzhi. Preparation and Thermoelectric Performance of Tellurium Nanowires-based Thin-Film Materials[J]. Journal of Inorganic Materials, 2020, 35(9): 1034-1040.
Fig. 2 FESEM images of Te nanowires obtained by the solution without ascorbic acid at (a) 140, (b)160, (c) 180 and (d) 200 ℃, and with ascorbic acid at (e) 140, (f) 160, (g) 180 and (h) 200 ℃
Fig. 5 (a) Seebeck coefficients, (b) electrical conductivities, (c) power factors of Te nanowire films prepared under different conditions; Surface FESEM images of (d) ATN160 and (g) TN160 films with insets showing corresponding cross-sectional FESEM images; Digital photos of film (1 cm×2 cm) resistance tests for (e) ATN160 and (f) TN160 films
Fig. 6 (a-d) Digital photos of film (1 cm×2 cm) resistance test and (e-h)FESEM surface images of TN160 film (a, e) without and with wet press at (b, f)10, (c, g) 20, (d, h) 30 MPa; (i, k) Cross-sectional and (j, l) high-magnification cross-sectional FESEM images of TN160 films (i, j) without and (k, l) with wet press at 30 MPa
Curve radius/ cm | Electrical conductivity/ (S·m-1) | Seebeck coefficient/ (μV·K-1) | Power factor/ (μW·m-1∙K-2) |
---|---|---|---|
∞ | 476 | 282.9 | 38 |
2.0 | 472 | 282.0 | 37.5 |
1.6 | 465 | 282.3 | 37.1 |
1.2 | 458 | 282.0 | 36.4 |
0.8 | 448 | 281.9 | 35.6 |
Table 1 Flexibilities of TN160 film with wet press at 30 MPa
Curve radius/ cm | Electrical conductivity/ (S·m-1) | Seebeck coefficient/ (μV·K-1) | Power factor/ (μW·m-1∙K-2) |
---|---|---|---|
∞ | 476 | 282.9 | 38 |
2.0 | 472 | 282.0 | 37.5 |
1.6 | 465 | 282.3 | 37.1 |
1.2 | 458 | 282.0 | 36.4 |
0.8 | 448 | 281.9 | 35.6 |
[1] |
CHEN L D, SHI X, LI Y L, et al. Congruent growth of Cu2Se thermoelectric thin films enabled by using high ablation fluence during pulsed laser deposition. J. Inorg. Mater., 2015,30(10):1115-1120.
DOI URL |
[2] | FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sust. Energ. Rev., 2016,64:635-659. |
[3] |
LEE J A, ALIEV A E, BYKVOA J S, et al. Woven-yarn thermoelectric textiles. Adv. Mater., 2016,28(25):5038-5044.
DOI URL PMID |
[4] | HU G, MA J, ZOU J, et al. Dependence of the texture on the thermoelectric properties of C/C composites. J. Inorg. Mater., 2015,4:24-29. |
[5] | SIDDIQUE A R, MAHMUD S, HEYST B, et al. Review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sust. Energ. Rev., 2017,73:730-744. |
[6] |
GUO Y, DUN C, XU J, et al. Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces, 2018,10(39):33316-33321.
DOI URL PMID |
[7] | HE M, LIN Y J, CHIU C M, et al. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy, 2018,49:588-595. |
[8] |
DELAIZIR G, BERNARD G, MONNIER J, et al. A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res Bull., 2012,47(8):1954-1960.
DOI URL |
[9] |
ZHAO C, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 2012,101(21):251112.
DOI URL |
[10] | XU S, HONG M, SHI X L, et al. High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments. Chem. Mater., 2019,31(14):5238-5244. |
[11] |
BESSAIR B, MATHIEU M, SALLES V, et al. Synthesis of continuous conductive PEDOT:PSS nanofibers by electrospinning: a conformal coating for optoelectronics. ACS Appl. Mater. Interfaces, 2017,9(1):950-957.
URL PMID |
[12] | ABAD B, ALDA I, CHAO P, et al. Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A, 2013,1(35):10450-10457. |
[13] |
LIU J, JIA Y, JIANG Q, et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl. Mater. Interfaces, 2018,10(50):44033-44040.
DOI URL PMID |
[14] |
WAN C, TIAN R, KONDOU M, et al. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat. Commun., 2017,8(1):1024.
DOI URL PMID |
[15] | GAO J, LIU C, MIAO L, et al. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Advances, 2016,6(38):31580-31587. |
[16] | SONG H, CAI K. Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy, 2017,125:519-525. |
[17] |
SEE K C, FESER J P, CHEN C E, et al. Water-processable polymer- nanocrystal hybrids for thermoelectrics. Nano Lett., 2010,10(11):4664-4667.
DOI URL PMID |
[18] | GAO J, LIU C, MIAO L, et al. Improved thermoelectric performance in flexible tellurium nanowires/reduced graphene oxide sandwich structure hybrid films. J. Electron. Mater., 2016,46(5):3049-3056. |
[19] | WU B, GUO Y, HOU C Y, et al. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater., 2019,29:1900304. |
[20] |
ZHONG B N, FEI G T, FU W B,et al. Solvothermal synthesis, stirring-assisted assembly and photoelectric performance of Te nanowires. Phys. Chem. Chem. Phys., 2016,18(48):32691-32696.
URL PMID |
[21] |
ZHONG B N, FEI G T, FU W B,et al. Controlled solvothermal synthesis of single-crystal tellurium nanowires, nanotubes and trifold structures and their photoelectrical properties. CrystEngComm, 2017,19(20):2813-2820.
DOI URL |
[22] |
LI Z, ZHENG S, ZHANG Y, et al. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A, 2013,1(47):15046-15052.
DOI URL |
[23] | GAO J, MIAO L, LIU C, et al. A novel glass-fiber-aided cold-press method for fabrication of n-type Ag2Te nanowires thermoelectric film on flexible copy-paper substrate. J. Mater. Chem. A, 2017,5(47):24740-24748. |
[1] | ZHANG Botao, SUN Tingting, WANG Lianjun, JIANG Wan. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films [J]. Journal of Inorganic Materials, 2024, 39(12): 1325-1330. |
[2] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[3] | Peng LI, Xiao-Lei NIE, Ye TIAN, Wen-Bing FANG, Ping WEI, Wan-Ting ZHU, Zhi-Gang SUN, Qing-Jie ZHANG, Wen-Yu ZHAO. Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/epoxy Composite Thermoelectric Films [J]. Journal of Inorganic Materials, 2019, 34(6): 679-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||