Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (1): 96-102.DOI: 10.15541/jim20180172
Special Issue: MAX相和MXene材料; 光伏材料
• RESEARCH PAPER • Previous Articles Next Articles
XIONG Hao1, ZHANG Bo-Xin1, JIA Wei2, ZHANG Qing-Hong1, XIE Hua-Qing3
Received:
2018-04-19
Revised:
2018-08-01
Published:
2019-01-21
Online:
2018-12-17
About author:
XIONG Hao. E-mail: xhqmlwhj@126.com
CLC Number:
XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96-102.
Fig. 1 Surface SEM images of PbI2 films on the glass with or without polymer modification (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
Fig. 2 Surface SEM images of perovskite films with various concentration of PVP (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
Fig. 5 XRD patterns of fresh perovskite films doped with PVP of various quantities; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP (PbI2 on the left, perovskite on the right)
Fig. 6 XRD patterns of CH3NH3PbI3 doped with PVP of various quantities after three weeks in the air; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP, respectively (PbI2 on the left, perovskite on the right)
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
Table 1 The parameters of as-prepared perovskite solar cells doped with various concentration of PVP
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
Table 2 The parameters of perovskite solar cells doped with various concentration of PVP after three days in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
Table 3 The parameters of perovskite solar cells doped with various concentration of PVP after three weeks in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
[1] | HADADIAN M, CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater., 2016, 28(39): 8681-8686. |
[2] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2: 591-1-7. |
[3] | MENARD E, MEITL M A, SUN Y, et al.Micro and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev., 2007, 107(4): 1117-1160. |
[4] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater., 2014, 13(9): 897-903. |
[5] | GUO XIU-BIN, YU WEI, LI JING, et al.Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. [J]. Inorg. Mater., 2017, 32(8): 870-876. |
[6] | CHANG C Y, CHU C Y, HUANG Y C, et al.Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955-4961. |
[7] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476-480. |
[8] | ZHOU Z, PANG S, LIU Z, et al.Interface engineering for high-performance perovskite hybrid solar cells. J. Mater. Chem. A, 2015, 3(38): 19205-19217. |
[9] | ZHANG MIN, WANG ZENG-HUA, ZHENG XIAO-JIA, et al.Structural effect of TiO2 on the performance of MAPbBr3 solar cells. [J]. Inorg. Mater., 2018, 33(2): 245-250. |
[10] | YANG G, TAO H, QIN P, et al.Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 2016, 4(11): 3970-3990. |
[11] | MALI S S, HONG C K.Pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528-10540. |
[12] | JIANG WEN-LONG, ZHOU WEI, YING JI-FEI, et al.Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. [J]. Inorg. Mater., 2017, 32(1): 96-100. |
[13] | LIU CHANG, YUAN SHUAI, ZHANG HAI-LIANG, et al.p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells. [J]. Inorg. Mater., 2016, 31(4): 358-364. |
[14] | HUANG X, ZHU C, ZHANG S, et al.Porphyrin-dithienothiophene π-conjugated copolymers: synthesis and their applications in field- effect transistors and solar cells. Macromolecules, 2008, 41(19): 6895-6902. |
[15] | XIONG H, RUI Y, LI Y, et al.Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem. C, 2016, 4(28): 6848-6854. |
[16] | MÜLLER C, GLASER T, PLOGMYER M, et al. Water infiltration in methylammonium leadiodide perovskite: fast and inconspicuous. Chem. Mater., 2015, 27(22): 7835-7841. |
[17] | AMEEN S, RUB M A, KOSA S A, et al.Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 2016, 9(1): 10-27. |
[18] | LI B, LI Y, ZHENG C, et al.Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv., 2016, 6(44): 38079-38091. |
[19] | ZHANG M, LYU M, YU H, et al.Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem-Eur J., 2015, 21(1): 434-439. |
[20] | CHAUDHARY B, KULKARNI A, JENA A K, et al.Poly (4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. ChemSusChem, 2017, 10(11): 2473-2479. |
[21] | PALOMARES E, CLIFFORD J N, HAQUE S A, et al.Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. [J]. Am. Chem. Soc., 2003, 125(2): 475-482. |
[22] | CORBETT J D, VON WINBUSH S, ALBERS F C.The solubility of the post-transition metals in their molten halides. [J]. Am. Chem. Soc., 1957, 79(12): 3020-3024. |
[23] | MABROUK S, DUBEY A, ZHANG W, et al.Increased efficiency for perovskite photovoltaics via doping the PbI2 layer. J. Phys. Chem. C, 2016, 120(43): 24577-24582. |
[24] | OKU T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, ed. L. A. Kosyachenko, InTech, ISBN: 78-953-51-2184-8, DOI: 10.5772/59284. 2015. |
[25] | LIU T, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv. Energy Mater., 2016, 6(3): 1501890-1-7. |
[26] | KIM Y C, JEON N J, NOH J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 2016, 6(4): 1502104-1-8. |
[27] | ZUO L, GUO H, JARIWALA S, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv., 2017, 3(8): e1700106-1-12. |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[3] | PAN Zesheng, YOU Yaping, ZHENG Ya, CHEN Haijie, WANG Lianjun, JIANG Wan. Stability of Phosphors for White LED Excitable by Violet Light [J]. Journal of Inorganic Materials, 2025, 40(3): 314-322. |
[4] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[5] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[6] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[7] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[8] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[9] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[10] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[11] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[12] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[13] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
[14] | WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347. |
[15] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||