Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (11): 1209-1214.DOI: 10.15541/jim20170021
• RESEARCH PAPER • Previous Articles Next Articles
TANG Xiao-Hua, LI Hui, YANG Ai-Mei, ZHA Fei, CHANG Yue
Received:
2017-01-10
Revised:
2017-03-31
Published:
2017-11-20
Online:
2017-10-20
CLC Number:
TANG Xiao-Hua, LI Hui, YANG Ai-Mei, ZHA Fei, CHANG Yue. Imidazole and Nickel (II) Modified SAPO-34 and Its Catalytic Activity in CO2 Hydrogenation to Ethylene[J]. Journal of Inorganic Materials, 2017, 32(11): 1209-1214.
Catalyst | Specific surface/ (m2•g-1) | Pore volume/ (cm3•g-1) | Pore diameter/ nm |
---|---|---|---|
SAPO-34M | 530.0 | 0.36 | 0.20 |
SAPO-34S | 526.9 | 0.34 | 0.22 |
SAPO-34P | 520.2 | 0.31 | 0.26 |
SAPO-34T | 511.8 | 0.29 | 0.29 |
SAPO-34R | 506.3 | 0.28 | 0.30 |
SAPO-34N | 471.4 | 0.27 | 0.38 |
Table 1 Surface area, pore volume and pore diameter of SAPO-34X
Catalyst | Specific surface/ (m2•g-1) | Pore volume/ (cm3•g-1) | Pore diameter/ nm |
---|---|---|---|
SAPO-34M | 530.0 | 0.36 | 0.20 |
SAPO-34S | 526.9 | 0.34 | 0.22 |
SAPO-34P | 520.2 | 0.31 | 0.26 |
SAPO-34T | 511.8 | 0.29 | 0.29 |
SAPO-34R | 506.3 | 0.28 | 0.30 |
SAPO-34N | 471.4 | 0.27 | 0.38 |
Catalyst | CO2 conversion/% | Selectivity/% | |||||
---|---|---|---|---|---|---|---|
CH4 | C2H4 | C2H6 | C3H6 | C4H8 | CO | ||
CZA/SAPO-34 | 52.6 | 13.2 | 52.8 | 1.00 | 10.5 | 0.07 | 22.4 |
CZA/SAPO-34M | 53.4 | 12.2 | 53.5 | 0.12 | 9.6 | 0.08 | 24.5 |
CZA/SAPO-34S | 69.0 | 12.7 | 58.2 | 0.10 | 9.2 | 0.10 | 19.9 |
CZA/SAPO-34P | 73.8 | 8.1 | 67.7 | 0.06 | 6.3 | 0.10 | 17.8 |
CZA/SAPO-34T | 72.7 | 9.2 | 66.4 | 0.30 | 6.6 | 0.10 | 17.5 |
CZA/SAPO-34R | 71.8 | 9.8 | 65.2 | 0.50 | 6.8 | 0.10 | 17.6 |
CZA/SAPO-34N | 71.1 | 9.9 | 64.3 | 0.90 | 7.0 | 0.16 | 17.6 |
Table 2 Catalytic performance of CZA/SAPO-34X
Catalyst | CO2 conversion/% | Selectivity/% | |||||
---|---|---|---|---|---|---|---|
CH4 | C2H4 | C2H6 | C3H6 | C4H8 | CO | ||
CZA/SAPO-34 | 52.6 | 13.2 | 52.8 | 1.00 | 10.5 | 0.07 | 22.4 |
CZA/SAPO-34M | 53.4 | 12.2 | 53.5 | 0.12 | 9.6 | 0.08 | 24.5 |
CZA/SAPO-34S | 69.0 | 12.7 | 58.2 | 0.10 | 9.2 | 0.10 | 19.9 |
CZA/SAPO-34P | 73.8 | 8.1 | 67.7 | 0.06 | 6.3 | 0.10 | 17.8 |
CZA/SAPO-34T | 72.7 | 9.2 | 66.4 | 0.30 | 6.6 | 0.10 | 17.5 |
CZA/SAPO-34R | 71.8 | 9.8 | 65.2 | 0.50 | 6.8 | 0.10 | 17.6 |
CZA/SAPO-34N | 71.1 | 9.9 | 64.3 | 0.90 | 7.0 | 0.16 | 17.6 |
[1] | SITTICHAI N, LEKSE J W, BALTRUS J P,et al. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal., 2012, 2(8): 1667-1676. |
[2] | LIU X M, LU G Q, YAN Z F,et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind. Eng. Chem. Res., 2003, 42(25): 6518-6530. |
[3] | GAYUBO A G, VICENTE J, ERE A J, et al. Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming.Appal. Catal. A-Gen., 2014, 483: 76-84. |
[4] | DUBOIS D R, OBRZUT D L, LIU J,et al. Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves. Fuel Proces. Technol., 2003, 83(1/2/3): 203-218. |
[5] | JABBARI Z, FATEMI S, DAVOODPOUR M.Improvement of SAPO-34 fine layer formation on ceramic and steel supports by applying uniform-size synthesized seed particles. Asia-Pac J.Chem. Eng., 2013, 8(2): 301-310. |
[6] | SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ ZrO2 catalysts in the synthesis of methanol from CO2 and H2.Appal. Catal. A-Gen., 2006, 310: 127-137. |
[7] | YOU ZHENYA, DENG WEIPING, ZHANG QINGHONG,et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst. Chinese J. Catal., 2013, 34(5): 956-963. |
HIRSA M, TORRES G, KRIGE P,et al. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal., 2013, 3(9): 2130-2149. | |
[8] | NISHIYAMA N, ICHIOKA K, PARK D H,et al. Reactant-selective hydrogenation over composite silicalite-1-coated Pt/TiO2 particles. Ind. Eng. Chem. Res., 2004, 43(5): 1211-1215. |
[9] | PARK J W, SEO G.IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities.Appl. Catal. A-Gen., 2009, 356(2): 180-188. |
[10] | CHEN D, REBO H P, MOLJORD K,et al. Influence of coke deposition on selectivity in zeolite catalysis. Ind. Eng. Chem. Res., 1997, 36(9): 3473-3479. |
[11] | TAN JUAN, LIU ZHONGMIN, BAO XINHE,et al. Crystallization and Si incorporation mechanisms of SAPO-34. Micropor. Mesopor. Mat., 2002, 53(1/2/3): 97-108. |
[12] | MISOOK K.Methanol conversion on metal-incorporated SAPO- 34s (MeAPSO-34s).J. Mole. Catal. A. 2000, 160(2): 437-444. |
[13] | SALMASI M, FATEMI S, TAHERI NAJAFABADI A.Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates.J. Ind. Eng. Chem., 2011, 17(4): 755-761. |
[14] | CORMA L, NEMETH T, RENZ M,et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-viliger oxidations. Nature, 2001, 412: 423-425. |
[15] | GARSUCH O, KLEPEL R, SATTLER R, et al. Synthesis of a carbon replica of zeolite Y with large crystallite size.Carbon, 2006, 44(1): 593-596. |
[16] | WANG K, CAO G KENNEDY G J, et al. Pore modification of H-SAPO-34 using dialkyl zinc: structural characterization and reaction pathway. J. Phys. Chem. C, 2011, 115(38): 18611-18617. |
[17] | TIAN HAIFENG, YANG AIMEI, ZHA FEI,et al. Preparation of imidazole-modified HZSM-5 zeolite and its application in the catalytic synthesis of dimethyl ether from hydrogenation of carbon dioxide. Fine Chem., 2014, 31(2): 186-192. |
[18] | ZHAO YANQIAO, CHEN JIXIANG, ZHANG JIYAN.Effects of precipitation temperature on performance of the catalyst for dimethyl ether synthesis from carbon dioxide hydrogenation.Chem. React. Eng. Technol., 2007, 23(5): 456-461. |
[19] | EREN J, GARON R, ARANDES J M, et al. Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO- Al2O3/NaHZSM-5 bifunctional catalyst. Catal. Today#/magtechI#. Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO- Al2O3/NaHZSM-5 bifunctional catalyst. Catal. Today, 2005, 107- 108: 467-473. |
[20] | LIU ZHIJIAN, LIAO JIANJUN, TAN JINGPIN,et al. A method for evaluating the activity of CO2 hydrogenation catalyst for methanol synthesis. Chemical Engineering of Oil and Gas, 2000, 29(5): 268-271. |
[21] | DAI W L, WANG X, WU G J,et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of bronsted acid sites and framework structures. ACS Catal., 2011, 1(4): 292-299. |
[22] | JAROMIEC M, SOLOVYOV L A.Improvement of the kruk-jaroniec- sayar method for pore size analysis of ordered silicas with cylindrical mesopores.Langmuir, 2006, 22: 6757-6760. |
[23] | POP G, BOZGA G, GANEA R,et al. Methanol conversion to dimethyl ether over H-SAPO-34 catalyst. Ind. Eng. Chem. Res., 2009, 48(15): 7065-7071. |
[24] | BAEK S C, LEE Y J, JUN K W,et al. Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion. Energy Fuel, 2009, 23(2): 593-598. |
[25] | FUJIWARA M, SAKURAI H, SHIOKAWA K,et al. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and HB zeolite using two-stage reactor system under low pressure. Catal. Today, 2015, 242: 255-260. |
[26] | QI GUOZHEN, XIE ZAIKU, YANG WEIMIN,et al. Kinetic modeling of coke formation on SAPO-34 catalyst in the transformation of methanol to olefins. Journal of Fuel Chemistry & Technology, 2006, 34(2): 205-208. |
[1] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[2] | CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio [J]. Journal of Inorganic Materials, 2024, 39(5): 509-516. |
[3] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[4] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[5] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[6] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[7] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[8] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[9] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[12] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[13] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[14] | ZHOU Ganghuai, LIU Yao, SHI Yuan, LIU Shaojun. Slurry Preparation and Stereolithography for Activated Alumina Catalyst Carrier [J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
[15] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||