[1] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496-499.
[2] Lou X W, Wang Y, Yuan C, et al. Template‐free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater., 2006, 18(17): 2325-2329.
[3] Li Y, Tan B, Wu Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett., 2008, 8(1): 265-270.
[4] Guo Z P, Du G D, Nuli Y, et al. Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. J. Mater. Chem., 2009, 19(20): 3253-3257.
[5] Hu Y, Huang X, Wang K, et al. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J. Solid State Chem., 2010, 183(3): 662-667.
[6] Fang X, Lu X, Guo X, et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun., 2010, 12(11): 1520-1523.
[7] Du Y P, Zhang Y W, Sun L D, et al. Self-assembled ferromagnetic monodisperse manganese oxide nanoplates synthesized by a modified nonhydrolytic approach. J. Phys. Chem. C, 2009, 113(16): 6521-6528.
[8] Seo W S, Jo H H, Lee K, et al. Size‐dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed., 2004, 43(9): 1115-1117.
[9] Yang L X, Zhu Y J, Tong H, et al. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study. J. Solid State Chem., 2006, 179(4): 1225-1229.
[10] Li P, Nan C, Wei Z, et al. Mn3O4 Nanocrystals: facile synthesis, controlled assembly, and application. Chem. Mater., 2010, 22(14): 4232-4236.
[11] Ahmed K A M, Zeng Q, Wu K, et al. Mn3O4 nanoplates and nanoparticles: synthesis, characterization, electrochemical and catalytic properties. J. Solid State Chem., 2010, 183(3): 744-751.
[12] Ren T Z, Yuan Z Y, Hu W, et al. Single crystal manganese oxide hexagonal plates with regulated mesoporous structures. Micropor. Mesopor. Mater., 2008, 112(1/2/3): 467-473.
[13] Shao C, Guan H, Liu Y, et al. Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique. J. Solid State Chem., 2004, 177(7): 2628-2631.
[14] Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 2010, 132(7): 13978-13980.
[15] Gao J, Lowe M A, Abruna H D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater., 2011, 23(13): 3223-3227.
[16] Nohman A K H, Ismail H M, Hussein G A M. Thermal and chemical events in the decomposition course of manganese compounds. J. Anal. Appl. Pyroylsis., 1995, 34(2): 265-278.
[17] Luo J Y, Zhang J J, Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus ?-MnO2. Chem. Mater., 2006, 18(23): 5618-5623.
[18] Jiang H, Zhao T, Yan C, et al. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale, 2010, 2(10): 2195-2198.
[19] Xiao L, Yang Y, Yin J, et al. Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J. Power Sources, 2009, 194(2): 1089-1093.
[20] Liu Y, Mi C, Su L, et al. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta, 2008, 53(5): 2507-2513.
[21] Hassan M F, Guo Z, Chen Z, et al. ?-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Mater. Res. Bull., 2011, 46(6): 858-864.
[22] Chen J, Xu L, Li W, et al. ?-Fe2O3 Nanotubes in gas sensor and lithiumion battery applications. Adv. Mater., 2005, 17(5): 582-586.
[23] Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 2006, 312(5775): 885-888. |